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ON TWO-DIMENSIONALFLOWS OF COMPRESSIBLE .FLUID-S 
.; 

; By' Stefan Bergman 

. . SUMMARY 

'This r'eport is devoted to the study of two-dimensional 
steady motion 'of a compressible fluid. 

It is shown that the.complete flow pattern around a 
closed obstacle cannot be obtained by the method of Chaplygin. 
In order to overcome this ,difficulty, a formula for the 
stream-function of a two-dimenstonal subsonic flow is derived. 
The formula involves an arbitrary function of a complex vari- 
able and yfelds all possible subsonic flow patterns of certain 

-7 
types. It is a generalization of the expression Im g(3] + 
for the stream function of an incompressible fluid. C 

(Here Y 
is the velocity vector and g an arbitrary analytic function.) 

Conditions are given so that the flow pattern 13 the 
physical plane will repne-sent a flow around a closed curva. 

.: ; ,: " . : 
The formula obtkned can be employed for the approximate 

determination of a subsohic flow around an obstacle. The. 
method can be extended to partially supersonic- flows. 

INTRODUCTION 

The theory of irrotational two-dimen'sional flows of an 
incompressible fluid is based on the theory of analytic func- 
tions of a complex vsrfable. 

The relation between these two theories is given by the 
fact that the stream function Q(X,Y) of flow satisfies the 
Laplace equation :(a"w/ax"> + (a2q/ay2>.= 0. Hence the imag, 
inary part of an analytic function f(x + iy) is a stream 
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2 XACA TN No. 972 

function of a possible flow, and all flow patterns can be ob- 
tained in this way. 

For certain purposes, however, it is useful to modify 
this approach. The stream function may be considered as a 
function of the components v1 and vs of the velocity vec- 
tor -+* Again Q satisfies the Laplace equation 
fa2qqav,V4 (aQ/av,a> = 0. Therefore, it is p0~~ibie t0 
choose as Q(v,,v,) the imaginary part of an analytic func- 
tion g(v), v being a complex variable in the (vlrv2)- 
plane. In this way the flow pattern in the (v,,v,)-plane 
(hodograph plane.) is obtained. In order to find t.he real 
shape of the streamlines it is neceeeary to derive from 
Im g(v) the correspondipg function..of x and y. This 
transition does not involve any serious theoretical diffi- 
culties. 

In the case of a potential flow of a compressible fluid 
the first method (construction of the flow patterndirectly * 
in..the:physical plane) leads to a rather complicated non'lin- 

'ear partial differential equation. The second approach (con- 
struction of the flow pattern in the hodograph plane) reduces to l L 
the'ihtugration of a linear 

. '(See*Chaplygin, reference 1. P 
artial differential equation. 

Hence, the use of the hbdo-' 
graph method permits the applihation of various results frbm 

. the-theory of linear partial,differential equations;" For' 
'instance, a stream function in the hodograph plane can be ob- 

',tained as a linear combination of particular solutions of the 
linear equation mentioned. Chaplygin was the first to con- 
struct a sot of such particular 'solutions; Two other methods 
of constructing such sets haves-been @veti by the present', 
author. (See referance.2, pp. 16-20 and 23-24, and refersrice 
3, sec. 2.1 * 

However, Chapfygin's method and both methods given in 
referqnces 2 and 3 are not satisfactory in one respect. In 
general, the stream':function will be represented.by an infi- 
nite series of particular sblutionej and such a series will 
converge only%ithin a part of the domain in which the flow 
is defined'. 

lA hodograph of a flow around a profile is (in general) 
a multiply covered domain (see fig. lb and 2b)the branch 
point,s of,tvhioh are not~nocedsarfly located either at the 
oriqin or .at. infinity; on the other (continued on next. page) ' * - ', 

. 

,j. ‘, 

:, , ’ 

I , ’ . ! . ,* 



NACA TN No. 972 3 

To obtain results pertaining to the actual flow, a: rep-. 
resentation of the stream function as a whole is indisp'ensi- 
ble. A representation fulfilling these requirements is given 
in this paper. (See also reference 2, sec:6, and reference 
3, sec. 4.1 

If a linear relation between the pressure p .and.tbe 
specific volume l/p is assumed: 

P = A + o/p (1) 

(A,o constants), then the hodograph equation coincides with 
the Laplace equation. Assuming relation (1') and'using the 
theory of functions of a complex variable, Van K&m&t (refer- 
ence 4) and Tsien (reference 5) obtained the compressible 
flow past an elliptic cylinder. Equation (1) is a very $ough 
approximation to the actual pressure-density relation and. can 
be used only in cases where the local velocity is far below 
that of sound. 

In the present r-eport a general pressure-density relation 

P = A + Cpk (2) 

is used (A, 0, k are constants). (Equation (22 contains as 
a special case the adiabatic relation p = up" 
(2) gives 

.) Assuming 
a general formula for'the stream function. i&b 

formula expresses the stream,..functfon of a compressible flow ' 
in terms of an arbitrary anal'ytic function of a complex vari- 
able. ? 7,. ,' , 

The representation obtained is, in general, valid in the 
whole region where the flow is subsonic.andin some cases can 
be extended into a supersonic regfon also..‘ 

This investigation, conducted at the Brown University 
was sponsored by,. and conducted with the financial assistance 
of the I?ational Ad,yisory Committee for Aeronautics. 

(continued from page 2) hand, the Chaplygin solutions 
yield flows which (in the hodograph plane) either are single- 
valued, or multi-valued with a branch point at the origin or 
at infinity. In order to represent such flow patterns, sev- 
eral series development, each of which represents the,stream 
function Q under consideration in a certain part of the 
domain in which $ is defined, is needed. 

l 
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I take the opportunity to express my gratitude to Mr. 
Leonard Greenstone for his assistance in the preparation of 
the'present paper. . :- I 

NOTAT ION. 

Remark: In deali,ng with differential equations, the following 
complex notation is often used: 

us = au2 g&-i& ( > as ’ U-E =& 1 =, 
( au + i 

2ax 
au 

a.5 2 ax az ay > 
,. , . ’ ‘. 

. . 
=+ ;L(a?E”+eE)‘ e 

i .’ 
ueB 4 ax2 

= x + iy, B = x - iy . . 

a a= a - 0 $k - speed of sound; (equation (28)) 

a0 speed of sound at a stagnation point A: 
*. 1 

c . (See (941.:) .'., :' : ';. 
.I' ":;' '. 

ccn) (See (941.) , *.:.;,," FL.' 
. .! .i ;: ':. . 

exp(x) = eX; e base of Naperian logarithms 

f(z) an arbitrary analytic functioj?'bf' the c,omplex vari- 
able z I: '!. 

g constant of gravity 
,. ,....,. 

.. , ,. : . 

., ,g(G):'an analytic function of the complex variab.ls. l; the 
,'.,I 

*e: .* :, 'result of applym:p;,',t'he ‘transformation' z = z (5) t-o 
. i:.: f (2) : 1 ,.', . ..' : b. ^ ." : *: ,** . . 

. 

. 
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k ratio of specific heat at' :'c.olls~"~~t'jpr8;ssur.e to constant 
volume _ 

E(H) =(g>" = (-h-y (l- M=(B.)):+5). . '. ; \ .‘I 

* 
P pressure 

PO pressure "at rest" ' . .: . . 

r polar ooordinate in the physical plane 
. > .:: ', 8 = 1 -/x-G; (151) . . , ; 

schlicht E univalent I . 
. ,.a. 

--' . ,.. 
v Sp'be'd; magnitude of -$ :.. also, occasionally, the reduced 

speed v/a0 L s . . * 

Vl*Va Cartesian components of -? 

w=@+iQ 
: -: .; : 

1 I- :. :* :: ‘. 

XSY Cartesian coordinates in' the physical plane 
,I ', ; . ; y ;I . 

z = x + iy 
.: 1 . . ., ,I ,’ : ,r 

.,- , 
A constant in the pressure-dehsity reiatfon (22) 

also SGC. 3.) . . * 

am 
. 

D= = * SAL _ 
a (x,d ax ay .r. . ..’ *., . . , ‘) ‘I * , . . . . .I. 

E (See theorem (53).) EH = EC i G,:,;. ,. 

I. . . _I ,? I -. -., p :: ,. J.. . -. .,. , 

: . 

(See 
* . ; b: ; 

, ; ‘... . : 
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F= -(NE + 3') = (k + 'jM4 
64(1 - M2j3 c 

i.(,, - 1)&i-.4(3 - 2k)M' + 16 1 ;(71) * In 
Fm(2h) = e2hk* I (J.erkna (67)) 

k=l 
I ,.‘. 

F* (See theorem (83).) 

Fa (See (11.51, ff.) 

G(E) (See (53); also (1241.1 

G,(E) (See (681.) 

G,(E) (See (75j.1 
: * 0 

H = odcasionally a domain in the 
plane with boundary curve h 

H (See (115), ff.) 

I heat content 

I/g pressure hea,d 
kapk-l ‘\ 

\ ( g'k - l)j 

IIll the imaginary part of 

K kernel function (See reference 3; e.leo sec. 3.) 

KH 
kEjr,'ne$"f$ndtf:&' 'of H;: K$ = .r 7 

%H(V,A)dV' 

L(Q) = Qcy + W; (701 

~,W =. @[I + N(+ + $1; (46)o ,: .** . . ' '*_ 

L&J//) E Q[x c F&; (741, ff. :,: 
L 
. 

=a (See (115J.j 

'See .remark 1. 
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M a .= a0 - &(k - l)va 
2 I 

4 ; local Mach number; (31) 

N=- (k + 1) M4 1 
8 

. : i47) 
(1 - I!P)3'z 

Na (See (115j.I 

A 

Q"' = -4 
r 

F dh; (107)l 
. --CD 

QW = $ F + $Q(+'; (108F 

Q(n) (SeEa (84)::) . 

..Gcn), .( See ('i*).-. 1. ,.. , _, * . .:v- . . 

(1141, ff. '. 

R(1) aH =-+- av 
i HQ(~) 2. dv' (1141, ff. 

- : 
&l) 

. ..-.. I . 
cSee cl14), d--j: ; :T,- :.i.t:-c:. 

. . 
Be the real part of 

. . 

. . . z,.:’ ’ 

,. 
,.., . . -.- 

4 . 

. . . . 

Schlicht E unfvalent 

7 

: , L ? 
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-? = veie = v1 4. iv, I . ielocity vector ., * II. 
A ? . 

-? = ve-16 = v1 - iv, = +f 

VW magnitude of the velocity at infinity 
-:x i * . . 

w,w* (See (119).) 
-1 -1 1 ; f 

- s )( h - 1 
-l+s h-l+1 

,(4;62> .- .a- :. " .; 

a the angle which a doublet makes Cith the real gxi's. (14) 
(Also, a real translation of the axis (See (115) ante.) 

E, aeB If a is a member of B" or 1t a belongs to B". 

5 = A zt ie in which case a = h T i6 (Thi s variable use of 
5 merely means a reflection with respect to 

the real axis.) . I 

-+ 
e the angle which V makes with the real axis ; '. 
UM) = A(v); he), (49) 

c 

1 
P density; p = p, 1 -*ik ,'13 V2 k-1; (25) 

zag 3 

PO the density 'Iat rest" 
I I' : 

5 a constant in pressure-density relation -p, = A + op k; (22) . . . 
a potential functionl; also, the polar angle in the physical 

plane (polar coordinates) ' e', ** .. 

. . 

L .I. . 
. . ., . ..-* ; ._ .: . ;ID.,,. 

-w 
r circulation: in part II the Gamma fuhctio'h I'(x) = e-'txW1dt; 

(See sec. 11, ff >. * 
lSee r emecrf'2. 1 
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: ,... ‘. . ,. 

11, Laplace operator: A@ = 
. . 

AH'= ahp, A~ = anpe ./ . . 
.-. ,. . ' 

a? f'otential EunctI‘on,- ('Se'* remark 1.) . . . . 

47 Stream Function (See remark 1.) 
. . 

L 

Remark 1: In the'fo'llowing, 
functions @(x,y) 

the potential and the stream 
aqd $(x,y) ( as well as several other 

varfables whiqh'a~e indicated in this section) are considered 
as functions of do'fferent qalrs of variabtlea. In passing 
from the physical‘to some other plane, new symbols should be 
introduced for c$ and 4.~~ since In different planes @ and 
Q are ,diff.erent functions .of their respective arguments. 
For .instanae, ~-&&si:ri:g to the (v,e)-plane yfel,ds 

? : ,. .: . 
I+) h,e j k\t x(v,6 1, ‘y(Y,e) . . ,. * . -’ c : : '.' : 1 . . .,I. .- . *. . 

<J?or the'aake :of brevity :the. author omits' the suPerscript and 
always writes @ and @, no matter in vh.ich plane he con- 

I_,. sider s .th.f~,.se functions. - . ,. . . . . . _ * _ . . -. , * : 

FO.R@WORD a, . - ., 

. . 
L , ; .: 2 *. 

. . The 'itream function I) of an incompressible fluid flow 
is a ii'oluti;an'of'.'the Laplace equation .: : . . . w' I -.! '.... ': .I- . . . .:.i ,* , ': ..,. . . , * : 

. ;. . ., I . 5 : ,. ,, .I ,.aa .+ & = '0 : 
axa asa 

. '. c,zg . 
. . . . 7 i. : ; . . . r. .: 

There %%Ps%s 'a ge'neral farmula .*". 
. 

. -. . .' i : .* I .? . 1' :: ': . . . .5: . * 
JI = Im f(s) , . '8 = iog V'-*'LB' [ 1 ,.':' ** (4) 
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in terms of an arbitrary function f of one variable, for 
solutions of this equation. Here v is the speed and 8 
the angle which the velocity vector forms with the positive 
x-axis. ,. 

In the case of a flow of a compressible fluid, the 
stream function is a solution of the system of equations' 

: + 2 
( > 

!.Q k+La*a*vaa+ -- 
(Poao)a P 

= o " 
axayaxas 

where po, a,, and k are constant. For air, k = 1.4. 

(5) 

A generalization of formula (4) to the case of subsonic 
flows of a compressible fluid is given in this paper.. Let 

M aO 
a - $(k - 1)~" 

3 

+ 
be the local Mach number. If it 

is assumed that the 
f 7 

1 w is subsonic and that k = 1.4, ?unc- 
tions h(M), H(M), Q n CM), n = 1,2, . s are determined 
(see table Ib) so that for the solutiins of (5) there is ob- 
tained a roprssentation2 . 

'Stream function $ and density have to be consid- 
ered as unknown in system (5). The eliiination of p, in 
order to obtain one equation for 9, is impossible. 

'For many pu p r oses in evaluating (61, it suffices to 
take only a few terms of.the .series. There also exist methods , 
for improving the convergence of (6). As will be shown elso- 
where, it is possible under rather general ass&mptions to . 
interchange the _ lim : 

m--3- and the summation 7 and thus 

obtain a new formula for \I/; In many instanci: however, the . 
formula in tho original form is more suitable for applica- 
tions, since by a suitable choice of the m's it is possible 
to achieve faster convergence. 
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‘-I I f(p) 
. . 

t = A CM) - 16, ‘A (.M) = $ log 
i . . . . . '.,. 

, . . . 

in terms of'an arbftrary function of one &lzablsl.,,' .'Sin'ce f 
the transition to the variables x, y does not stirivoive' any 
.essential difficulty, (4) 
incompressible 

and (6).yield patterns for possible 
and subsonfc (compr'essibls) fluid flows. 

? : 
.Fgrmula (6) is of interest not merely as a tool for com- 

pufing.;examples of flows' of.'a 'compressible,flu.id.~but~it may 
be*c'onsidered also as an.operatfon'which transformsestrqart, 
funct:i,on8 of incompres'sfblB~flows into stream functions.r.of; 
cor&ressible flows. ~Thie*fdrmula suggests the.--Ijossfhilitiy.of 
carrying over various p'hysiaal laws whi'ch govern the motion 
of‘an incompressible.fluid to the case of,a compressible 
fluid. i '. , 

,In a'companion paper this formula will be used for &oh- 
strutting a subsonic flow around a curve which approximate's 
the boundary of an obstacle given in the xy-plane. (See 
NAC& TN No. 973.) :‘ 

. 
Another ap$lication of the above result is to "distor- 

tion theory"..i‘that is, the study of how the properties and 
'The possibility for generalization of the formula for 

the case.of*'a nixed (i.e.; 'partially subsonic and partially 
supersoniZ)'flow i'~~discussdd in.,the paper. St i.e observed 
that for 'Id'< 1, 5 is a complex!-number,,for, MB1 a. :. 
purely imaginary number. THerefore;..for ,.M.C 1, f(s) hi 
a functXon'o'f one complex:varfable., Yhdle for, M >.'I it'is 
a function of a real variable. '* '.I '. I * : . . * 
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the shape of the.'boundary change (in applyi'ngcthe preceding 
procedure; retain'in both formulas (4) and (6), the same 
function f) upon passing from a flow of an incompressible 
fluid.to the corresponding subsonic flow of a compressible 
flpidior upon changing the density-pressure relation of the. 
fluid. 

1 l . THEl HODOGRAPH MBTHOD IN THE CASE OF AR INCOYPR3SSIBLI FLUID 
. '. ' : 

*,.l.~:AIQenbral Representation for the Stream Function of 
, . . . ;. . 

Plows of an Incomprassiblo Fluid in Terms of an 

Analytic Function1 of a Complex Variable 

A stream function of a flow of an incompressible perfect 
.flui,d :is a:hgrmonic function - that is, a function which sat- 
isf,ieS 'th' Laplace equation . 

. 3.f$*ZYEo :>I a, (7)' 
i3X ay” 

. . 
Conversely, a function \c, which satisfies equation (7) c’an 
be.interpreted as the stream funotion of a suitable flow. 
Since the.imaginary part of an analytic function of a comolex 
variable satisfies (7), 
there exists a function 

a"f4,;or- every function satisfying (7) 
such that 

Jl(x,y) = Im f(z) c 1 (8) 

CS) is tho "general for,mulall for the stream 'functions of a 
fl,ow of, an incompressible fluid. Yere f(s) .:ranges over 
the totality ofcanalytic functions. 

. 

In connection with various problems in fluid dynamics as, 
for, esainp'le, jet problem,s, another method of attack was 

,.. 
.,.,. lIn many instances an analytic function of a complex 

vari'able consists of several (or infinitely many) branches, 
each of which is defined in the whole xy-plane. These 
branches cover the plane many times.. Since- a flow covers the 
plane or a part of it only once, each 'branch gives rise to a 
physically possible stream function. *'Ha&ever, here and' in 
the' f,ollowing; a-fun-ction is always spok'en'of rather than.a 
particular branch of it, . . .., ! ..I. 8.. . 



This apprpach:. leads to another .gen,er,al formula wh-&ah,:' 
while it is more koiplicated tLa'li.(B), ha's the &dvant*a'ge-o'f 
being capable of generali.!zq$ion to Lhe case of a compressible 
fluid. 

In the case of an incompressible fluid the stream func- 
tion . . : 
‘. 

. 

\ ’ 

c 

is again a:harmonic function of log v and 8 and there- 
fore , . . 

q(v,e) 
1 

ie) (101 

yields a ltgeneral formula u ‘fOr.the Stream function (COnSid- 
ered as a function of log% and 6). 
@(log v,9) = constant, 

The representation, 
for the streamlines (in the logarith- 

mic plane) of t,he flow ift,pbtained immediately from (lo),. * :' . . . .-a :* . . :. . : ..- . 
. .,: . 
2.'%assage from‘the Log~ri~hmi,~.?~.a~e to tbe.Physical.Plane !" ..1. - 

plane 
The fact that the flow is qonsidered in the logarithmic 

instead Fof the .or$gin+l physical.plaqe introduce8 : . ;/ i. . I ~. - : : . . 
&'9y the tr.ansformation“ Z* = log 2 the author passes 

from the,hodogragh to,th,e.logarithmic, plane, In.thq. follow- 
ing, in"many instanCes, it‘.is necessary to Bass.froy the 
hodograph to the logarithm16 hlane and vice ve'rsa, often' 
without explicitly mentioning it. 
in order to avoid kjofifusion,; 

-This fact is stressed here 
._ .-. I.. ,.,m.Th@ *lane tbe.Cartesian coordi- 

nates of which are ..%og v and 8 is denotsd as the logarith- 
::mic plane. 

Se6 Notat.ion,'-'remark 1; Li. 
.' . . 

_. : (., : .. i 
.' 
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certain complications. In order to overcome them it is . 
necessary to investigate more thoroughly the-relatIona which 
ex-i'ciit between the flow around a giiven obstacle in tIrc phys- d 
ical plane and its image in:the hodograph and logarithmic 
planes. 

. 
Suppose'that the stream function $ = @(log v,6) of a 

flow (of an incompressible fluid) in the logarithmic plane IS 
given. The following procedura yields the ;;;t;mlines of the 
corresponding fl.ok in the physical plane. 

sdw' E-c 
.dZ 

(see reference 6, p. 321, it follows inversely that 
,. : 

dw 
Z = 2. 

T (11) 
., ' : I V . '. 

Writing 7 = ve -i 6 and noticing that the integration occurs 
along a straamline, Q = constant, and therefore d\l, = 0 
gives (11) written in the form 

. 
2 = 

P 
de! d@ = de 

V 3 . 

+$ d7r 1 (12) 

'Using the relations vc$v = -Q6 and % = "9v and noticing 
that along a streamline d@ = qv dv + QB d8 = 0 and there- 
fore; d6jd.v = -Q&e. gild8 

: . 
Ey separating the real and the"~maginary',parts there ie.ob.- 
Gained ae.parametric representation, I;:'.: ,' . 

(13) 
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. 
for theVstreamlinss in-the phy.s$calglane. On& of the 
streamlines or a suitable part of it'-.can be used.as the . 
boundary of the obstacle. 

: B$ emplojTing 'the hodograph-method in airfoil: theory it 
is convenient toLuse.:the fact that'the'appsoximate form of 
the hodographs of the flows around air'foils of certain shapes 
is known. If it is assumed that the domain H whfch repre- 
sent's tab. 'ilm-age of the. flow .in the logarithmic plane is given 
(see, e.g., fig. 2b), it is .poss.i.bFe. to construct. at :firpt.. 
the harmonfc funi=ti:on .:$(.log -v,e) which a&sumes a constant .'. 
va1u.e. on the boundary h of' the -,hodogr'a$h'!and'has the prey., . 
scribed.'%'eh'a'trior a't.,:the point which corresponds to z =. ca. 
Then with (13) the form of the airfoil in'thb-physical p-lane 
can be",deter'mina'd: : . _ 

'. . . . . . . 
AE is well known, for a given obstacle and :a given angle 

of attaq$.there.exists a whole family of flows.' If the ob- 
staule'hab a sharp edge; gs occurs in the case of an airfoil, 
all solutions but one have an infinfte.v,elbcfty'B‘t the sharp 
edge. The Joukowski hypothesis consist's'of the.'assumptioa 
that this exceptional solution, which has, an evsrgwhbre finrte 
sp.eed,.Srepre,sents that .flow which has physical significance . .' .?. .v, ;- ._. 

The:hodogr&hs of the flbws arou.nd't'he sam'e o'tjataclk 
(in the':physical plane) lead, in general,' to quits- d-ifferent 
p'i:cture$:%n,th$ .hodograph,-Yand f-n the 1:ogarithmio planes. For 
instance, in figur,e.s .la, lib,: and '2'&iS' 3b,: 
around ~+similar agrfoils are ;indicat:&d. 

two :different :flo,ws 
As mentiqned:,be‘foFe, 

the hodogaaph~of.:Joqkowak$ fIows.h&ti'; in 
similar to that indidated In.figure'tBb.' f 

engral,,a shape,, ,:I 
It 

this domain is partially twice covered.) 
is,notad that..:I ,: 

. ,. ;, . ,! '. 
If the hodog*a$ti me'thod"is use; =t.&!$Bt'in the Joukowski 

flow around some profile, it is at first necessary to deter- 
mine the function Qbg v, 0) which is definbd fn the domain 
FI -- I and has a d.oubl et at A, the point which is the image 
Of 
~r(l~i 5,ii 

In order to. construct the stream function 
prooeed fn 'the'follo'$.r;rfi:ng waisr,: *Determine the 

stream fundtion in the upper half~ijlahe"(Z-plane) - that fs, 
a functfon g(z) which assumes constant values along the 
real axis and has a combined vortex and doublet at some point, 
say at ""Z = 'i, and.then-f;he-fugct.~on: Z =.Z(log V>, which 

-I maps the;tip$er"p;lane into.8h~-dq~din-,‘E:,Itr_aii.afqrming Ze= :% 
_into the bran'dh.'point,!'P .of H. %ss:MS b-e seen, a:'family: 
of 'solutions is obtained for:thiS" proble'b. ,-i :m " : . .;I. ;:; Y ata- ,...I ,', . . , . . 

lA flow fulfilling the condit%ons: of. ~,he:,,J.ou,~~wSK'...;;.~ 
hypothesis is termed a "Joukowski flow." 
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The axis of the doublet is assumed to form the angle a 
with the real axis to obtain for the complex potential with 
the circulation I? the formula. . . . . 

eia mi . : 
,-icc, 

. _ .,. , (141 I . 
'. z+i z-i -,z+i., , ,: i. 

'., a.:: :' . I . . . ' ,: 1 , 
&yykc I :,, " 'Tke'.'term 'ir log Z - i 

2n z + f 
yields a purely cirqulatory r 

flgi'('see .fig; 3, also reference 7, p.'326); where$s ' , .'. i ,;, . 9 
mi ( eia '- .e-$a 

z-i > , 2 ,a 
represents a flow'wit,hqut:'any circulation 

. I 
and with a.doublet at Z = 2' the ajcfs of wh$ch intersects ',, 
the positive Z-axis with the angle a. (See'fig. 4, aiso 
reference 7, p. 202.) 

The question of how td determine tho mLippi.rig function 
has a more technical ChaFaCfeF and will be'considtired in the 
next section. . . 

. . . 

"&iphose 'now a function $ = r t'I'm[w iZ~,18w~~~ht~:s'~m:ge 
z uonstant value on the boundary,.h o H. 
of D -J;nt'*t'he hodograph plane.), 
obstacl'k'.'$s obtained if, 

"T..h,e boundary :curve of 'the 
starting"froti son.&. point, say B of 

h, x: .: aqd' y ' are determined by. in.t'egra$~i:n~g. aLong h. How- 
ever,, .i,p, g:?ner al. , 
cu’r v e’), , ’ 

the obtained curte.: wi;lS: noi. be. a cl'osed 
( t :I,n order that this be 's,o;I.1.t: !.s .re*quired that . . . : . . : i J I ;' , * ; .>. . . _. . '# : .. . . . 
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Remark: .:In'ionnection with further applicat,ions for a com- 
pressible fluid two separate expressi.ons have been derived, 
one for xs . the, other for y. CJ.earQ, fn the '-case under 
consideration they can be combined together, and (15) and (16) 
are then equivalent to _ - ;j I . 

,. .’ ,: 
.., . - .., . 
.I 

and T(Z) 
. . 

Since W(z) are analytic functions of a complex' 
variable Z, which are.regular in the.uppec.half plane ex-.. 

ceptat Z=i, and?(Z)' ' does,not vanish there, (17) .. 

equals the residue of _ dw(Z) 

-?tZ, dZ 
at the point Z = i.~ 

Write ZL= Z - i to. obtain for w and 7 the series devel- 
opments . -a . 

' w -= f 5 log Z,+ mieia + 
% l -*I 

T' 
= V,:+ V, ?I,.+.;. . . (18) 

3 .’ . 

and therefore 
,[' ..(. 
. . ' 

1 dw m- 
V dZI 

. 

P, P suffi*iently smal,l, . . ,,., . ..s 
. . ! . 

[ 

mie 
ia 

+ ir 1 - --..+ -IL I = - :.. ; . 
3sv/ 2rr.q . . 

v, z _ ".*' '. --- 
vca va? l l l ’ l 1 .’ L . I . 

fr' -t- mie = - miela + 
( 

:- 'K * i 
7 

1 

zl" 2TTV, vma -* 
+.;. (19) ;.: 

z, 
, :.r.. . 

. ; . : **: .'. . '.; 
. . . - 

Thus the..abatis' &'o&J.tion becomes * . . . . * .L -. .I ‘i 
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3. The Determination of the Function- Z = Z(% 

Which Haps the Image of the Flow in the 

IIodograph Plane into the Upper Half Pla'ne 
. . . . I. a. 

If the domain 
2, 3 

E is prescribed, then the function . 

which maps E can be obtained using one of the known 
methods in the theory of,confornal mapping. For instance, 

i,Trhsodorsents method (see reference 8) may be used to doter- 
mine the function which maps the circle into E and then 
compute the inverse function. The theory of orthogonal 
functions also yields (see reference 9, chs. VI to IX) a 

'. ,. =c 
s,implo' formula for the function .Z(V). 

I,. Denote by vu7-&> a complete set of orthogonal func- 
tions. Such a set can be( obtained, For instance, 

. 
onalizing the functions {(& - a))"), where a 

by orthog- 

is the 
ai. - br&nchr point .of the domain II. - 

3Y x(7, -5) - ~ .> cp,(?) v,(T) i,s denoted the "kernel 
.’ V=l 

function" of the domain. Then the function which maps the 
domain H into the unit circle, mappfng the point A on 

-r . 

the origin, is I/?- 
rc;c;', Li) 

and therefore 

. , . 

(21) 

is the- required fuh'ctioh." 

.Remark: Equation .(l.O')'may be writte'n in a little different 
f'orm. Wr i t i*ng 

. . . -. . 

z = log v + i(n - 8) 
gives 

*(log v,S) 'L" Im g:(Z) 

where .dz> = f(Z - ITT), The passage from 9 to 7T--8 
means that in the hodogka$h $lana't:he domain with respect to 
the imaginary axis is reflected. ' 
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. . 

. 
.‘.’ .‘& . THE HODOGRAPH METHOD IN THE CASE OF 

L A COMRRESS..IBI,E TLUID '- Su'RS,ORIc CA&3 
L ' . c 

* .: - A _. Introduction" L ' . . .:.. . 
,: . . . ,.*z * ::; 

"*In this part .t‘he h-o'digraph m.ethbd' will be generalfzed 
to the case of a compress'ible'fluid, ,, 

1 
The itream function $I (x,'y),' fn.this case, satisfies 

a complicated nonlfnear par‘tiaf diff.erential equation, 
(See (26).) If it is assumed;that the .density pressure re- 
lation is .of the farm '1 ': ".' 

. . .-. . . . . . . . '= .p(.p.)..' P 

whe'r 8 P(P) is a function cf. p alone', then thc.dse of 
Jr(O > instead of ,$(x;y) .:Cas.-Ciia~lygih;reference 1, and 
M0l:enbrbe.k have"'shown)'represents an important simpliffca- 
tion. If the variables v and 8 are introduced instead 
*f x ana Y, the function \I, satisfies a linear partial 
differential 'equation SW .= 0. (See.(3d) instead of ,a non- 
linear one, (26).)' : L . 

. .. 
Remark: It will be assumed that (unless the co.ntrary is ex- 8 . 
plicitly stated) 

P(PS = A+a’pk . (22) 

whore A, u, and k are c.onstants. However, the method 
developed here c'an' be employed in the case of a much more 
general pressure density,relat~ion~ . , 

In the case. of an .incpmpressib'l'e fluid,ihstead of 
merely a statement that the stream.'function 44m.h a> 
satisfies the Laplace equation, the-general formula (10) 
was given for solutions of the Laplace equation in terms of 
an arbitrary function f ,.of one variable $ 7 logv-ie. . -, . 

The main purp'ose'of the second part of thfs paper will 
be to give an analogous formula for a compr'essible fluia, 
and to derfve fr'qm' it the represeptation for the stream 
function in the:‘physical plane. ,n : . . 

As .will -be proved elsewhere, this rksult.leads to a 
con,$truction. of a'flow around an obstacle appr'oximatfng the 
griven, obstacle (in the physical,plane), ., .I, .- . 1 -..;: , . . _ 
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After a short discussion in eecti'on G &bout different 
types of differential equations and development in section 
7 of properties of the nuxiliary.functfon x (VI which is 
needed in the following, an operator is defined in sec- 
tions 8 to 12 (see (55,)). which~tr&nsforms functions f (6) 
of one complex variable s = h(v) + i9 into solutions 
uv,u of so($) = 0. squation So($) = 0 is the eoua- 
tion for the stream function .(Za..an appropriate plane) 
for .the case of compressfble subs:o.n$o motion. Then, if 
the following formulas'are used 

v 

k, = x(v) z - 
.I- 

0 
v 

Y =. y(v)= - 
1. 
‘0 

. ) . . - . . . I 

p *cos. 3 

oosin 0 

. 
$0 . 

. pV2 

dv 

dV 

c 
w.hi.ch are derived in section 14 and represci't a general- I. 
.ization of. (13), -a P$rame,tri'c representatfon'for the 
strs&mli&es In the physica Plane of the cprresponding 
flow is obtained. 

In eection I.4 are determined the ccndftions that the 
image of the. given hodograph yi'eld a fioW”in the physical 
plane around a closed curve. 

5. Differential Squktions for the Potential 

and Stream Functions 
I 

.I,. 
Prom the continuity and irrotationality of the motion 

it follows that for every flow there exist two functions, 
4 and \1/, the Pote.nt;ial and tiredm 'functions, such that 

I 
pG\1, ‘4 

‘,. , 
, ,’ -- = -. --- 
: ,li p Y ,x = Vl:r, 

-p “$‘!“; 4 
;p x. Y = -?,3 (24) ' 

Rere * "G ;" 'and v2 are t-he Cartesian components of the 
velocity vector and.. p isj:the .densi;y; (See reference 6, 
PPa 228-223 "or referme-nce 2;Lcp. 2.) Er,r,o~ the. Bernoul.li 
relation iiJ.2 v2 f I '= 

a 1 
.'corist:dnt, where .:2/g k kopk-l/g(k-l) 

denotes the Pressure head (see reference 6, formulas (13), 
p. 215, and (IO), @. 214),, it, f.ollows..%hat " 
l/2 v= k-l + ,ak(k:- l)-I. p... I I 

,=:gk(k L:l)'l 'p,:',t. or. 
,. . .' ',i , I 
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r 
L .; : p.: =. + (kml)k-'&-' p;-k v" . . I 
!1 ,'-, .!. -. l/k-l 
L i. 

= 
I 

= + @y2 

\r. 
' If (25) is substituted into (24) there is obtained for Q and 

\I, a system-of t,yo nonlinear differential equations . . 4 

.*Y = 4, 1 - ' L 2 a,'(k-1) (Qx2 +(by2 
l/k--1 

;. 
.' .' : . . . . ' . - . . . '. .L I . . 

(26) .; , 9, = - 4 &-;+ ,;,'(k-l)(+ + @y2)]1'k--r 

. . i 

It is noted that in-the case where the motion repre- 
sents an adiabatic process, A =.O,. and in the case of air 
k = 1.4. 

Eliminat&qg~. 4 gives for Q 

: 1 5 
. .:. 

’ . ‘: . :. ::..: ..i . . .::.‘.‘; ,r !: 

(28) 

- 
- ' ' LThe .d'er:ftdkkfoti -oC. (27,);'. and ,f 2&) is. o@.l.tt,e-&..herb.: " TPhe 

. . . . . e4uat-L“o.n. (.28 }. :ia; .d:eriv,sd in refe?,en:Ge:.6,,:-pi GXO:,.. ::Con.&erning 
(27).,:.s:es .refersnce 10,'. p. 5. .,.,'..,":.b~ .:; .- .,: ', .; :a.;., 
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As Chaplygin and Molenbroek shoyed, if the variables 
log v and 6 are in%roduced instead of 'x 'and yr bhan the 
equations relating the stream and the potential functions 
become linear. IfI 

- a+, e) = @Cx(v, 0)s Yh e)l - 
: 1 ( 29 > $(v, 9) =qJftx(v, 0,: Y(‘C w J . ;: 

is written, then, instead2 of (261, it follows that .:'.' '. I. . _. : 

‘ilJ :, a9 vw 
(log v)= a(ibg v) =.-SF- 

Here , 
I I !Jii 4 vlfao2 - +’ (k‘ .mJ> ;@ (31) - 

t 

. 

is the local Mach number. 
linear equation 

Eliminating,, a. gives for $ a 
. ' 

. . . 

‘. ., r 
-I- 0 P, a PO 

u > 
a* 

P b(log v) = ) 0 (32) 
P b(log 'v). :',. 

. 

In section 11 a' general express ion3will'be. given in the 
subsonic case (i.e., for M < 1) for the solutions of (32) 
in terms;' of'aa arbitrary function of one varieble f. That 
is to say, an e,xpress i,on will be obtained involving an arbi- 
trary function'of one variabie f such tha,t for every f 
the obtained expression represents a solution of (321, and 
conversely every solution of (32) which is regular at the 
origin can be re&esen.'teh.in.'the af.ore-rmentioned form with a 
suitably chosen f. - 

1s ee rrd% Flit ioqy ~f&l.r% .A* i i. 7. . 
"A detailed derivation of (30) is given in sec. 3 

reference 2,. . . ., ,, 

31t is n;o:t ed . 
fied slightis by 
The indicated result refers to thl:s,rsimpli.fied equation. 
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c 

Remark: It-is noted that for k = !e&, 1: < 1, oqua- 
Erb-(32); &come's: (.IS.IP~ appro-pr,i'at'is --v$r:i,ables) -the Lap.lace 
equation. : . ,:. ; 

., According to (25) and (3%)', . - . . . . . 

1 Since 7 -*Ma = ---- . (Pa/P ) 
a 

;. ! : 1 + (v/&o)"* 
= 1 + (v/a.o)2 ' 

and ,* ? . . J,. ; .. ,. / { ;I -: I 

[l + (v/ao)2] - d 
: 2 

= -- 
e log v dh . . . . . 

where 

x = 1 log Cl + (vlao)2]1’a - 1 a---- 
.2 [l + (v/a,)53'-/8 + I : -. 

,- : ,’ :: : 
elquation (32) bec,omesl 

. . 
. 

’ . . 
‘1, 

.J3:e.: -i- *x?b =“o (35) 
: *. . , : _ .: .i’ 

. . . . ~ ,..6. .A,Remark on D.iffYerLen.t.. Types of Equations .* ,. . -. . . . . . . - 
: - .- 

;; ’ :: t ,: . . . . . . .’ 

The first'purpose of t4e ';ei:.oL&:gHrt of this paper' 
is to.:tg$ve‘Ia~formula for sol&%'ions of (32) in terms of an 
arbitrary function of one varyable. 

. 

Before the, derivation of this formula is considered, 
it is well' to 'di'scuss' $n some particularly sfrngle, cases- 
the "general solutions" of this kind and indicate some 
charact.eristic,featur,es of s>chI,fo,rmulas.; I 

The following thr'& "eauatl$ons'a .will be' 'considered, L 
.where. w and 9 F.fyt it ies : .' ., -------I 'L - -4--- 

IThis result wa's firs't"'%btained by Cha'plygi.n*. 
reference 1, p. 99.) ". '!'l.. 

(See' x 
. i 

c 'A differential equation AuIIEI + 2BuE.9' + Cuge + DulV ‘ 
+ 3U 8 +. % = 0 .is sa:id to be b$'e'ltiptic' ir hyDerbo1i.c type 
in the domain R, if AC - B.'2) 0 '.or <O in R, rospoc- 
t ive.ly . ..,: :,: : ? *. -. . 'A . , . . . , . i ,- : 

. . ..* SJ'" I,. . .! .', . . 
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f 16, 7 = P : 19 . .'. ( 36 ) 
c 

r -i?zL= 0 

3j.L be 

- a%.:.: ‘I ‘d”u w + 4(1- b) - - 
b2 

22!L 0 
all ', 

(37) 

(32) 

In the first case the "general solutionI is givsn by . I 

$= f(5) + g(f) = f(p + is) + S(P - is) (39) 

in the second case by 

where f and are arbitrary~(sufficiently many times dif- 
ferentiable) fu:ctions of one variable. As p and 9 are 
real variables, it .is seen that in equation (36) there is an 
arbitrary function of one complex variable, and in equation 
(37) two arbitrary functi?ns of a real variable, (Clearly, 
in equation (36) in order to obtain real solutions, for g 
must be ohosen' the conj-.zgate to f: . . *a that is, Tf,, - I#), 

. 
A quite different situation is met in the case of aqua- 

"tion (38)....9y the transformation X = G, (38) can be . . . . . . . . 
reduced to the form a% t-i324J ,- -f- .;Egp =;, 0. ada The general solution in 

this case i$ . '., 

It is seen t,hat 'the 'arguments b/-K~-;:tt~ 
and are real f.or. ~1, h.1. ,, 

are complex 
for I.L(l , . ' 

'The solu~tions' behave quite.differently than in the pre- 
vious cases. It may'happon that a.soIution which is real 

.-for PC1 
stance';:' 

becomes imaginary for ,p 3‘1. Consider, for in- 
the +iktdo~ ;, ' . , 

*’ 

On the other hand, there also exist solutions which rom,$in. 
real in tho whole plane - that is, 

. 

c 
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On the other hand, there also exist soliitions'which remain 
real in the whole plane,- f?r example, . 

. , Equation:(.32) is..of mixed type' and therefore a situa- 
ti'on exists of the' type exhibite'd in (38). Of course, the 
behavior is more complex than in the latter case, because 
(32) is not the simplest case of equations of this- type. 
First, the function A(M) must be determin?d;wh.!.ch.may be 
done by reducing the equation (32) to the canonical form. 
. . '" L i' ; . . '. 'il.. 

7. The Function x( Mmj *' ,f ' 

In this..ae.cti.'on the. function X(M) is intro- 
duced. For conveqfgnce, an intermediary variable H = H(v) 
given by 

22%X..L2 

is employkh'.' :dv. v .',.'. , Ja2) ;'a‘ . a. ; I. a.,, . . . 

The equation (32) becomes 
. . . 

2 
(43) 

If M < l-that is, in the cas'b of subsonic motion- then the 
coefficients of both L.06 ' and . . . ..*HH. are positive and th.er.e-., 
fore the equation'is'of' 81l;it'ic type. 'if .* : 

M :,: l'-y &., a; ; - , . 

inthe case of supersonic motion- 
have different sign&', 

the foregoing,coefficients 

; ,' 
and the'equatidn is hyperbolic.? : I-:),'. 

* In order.to obt'ain (43)'is reduced to the so- 
called canonical form. (See ief.erence 11, ch. I * sec. 1.) ". b ; ; t 

Introducing d . 
.- ,: 

where 

$ =h(H) + i6, 
'. '- . . . . ,, t = A (H) - I"," 

. . 
(44) .r 

: - . . . . . __ 

IThe local Mach.number M j~l~$s,‘ .fn‘ t-'h+& 'c&$go bf ("32) ;' j i 
role similar 'to thtit‘of p in the :&se iof. (3.8 );.1. . ,. . I . : 

..?tt' is nofed'that, for., H 'k 1, ;c and, f 
quantities' 

,are-,complex 
~~rhieh-c5.re'adnbiigst.d to each other;fo$ I! =r 1 they 

become two (independerst)'ptirel'y imaginary quantities, (Sac 
(481, bw.) 
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I  

the equation (43) becomes 

- 
I 6 , - : . 

wh8rez :. . . 

N = N([ + 1, = N(v) 

$(k 4 
+ 1) Y2 r [ aO 2 - 74” 

$k - 1) v2, 

(k + 1) M' = - 
8 (1 - MWT 

(47) 

The function h(v) = h(y) may now be easily evaluated. From 

r , - 

it follows,.bby a'purely formal computation, that 
., * 

A(v) = h(M) (48) 

h =., (E: '; :)"2' for k > 1' 
> 

For 5 M < 1, A(M) is a real quantity, ff M > 1, then 
! -A., -- 

"h(M) = -i (tan-'! /El -,$[tan-')(h& - 1) 
c 

; (49) 
I - ,.. I" 

. . .e . . 
is a -ourely imaginary auantity . , .:* .' 

lS88 iJ!OtatlOn,';rQmark 1. . . . 

a 
. I,. 

*’ .For k = 1,;: ;h(.M) i 
c 

c .fi v M2j1’2 +dg 
1 i+.- .p,'/2 -, I 

. 



If k=--l,M<l . 

h(M) = 
El.+,(via;)2j l/a + l ("' 

. 

M = 2e x/(1+ e2A) 'and (v/a01 ,= 20 ‘/(I- e2X) 
‘. . . . . 

:’ 
For the application of thj.s theory, the inverse fun-' 

t ion id = im > often fs'n,eeded. 'This can be determined. 
either by preparing once and for al1.a diagram A = h(M) 
for a fixed value of' k or analytically, representing 
M= X(h) in the form of an infini+e series’. For M c 1, 
k>l there fs obtained: . '. .c. I;' - . , 

T(2X,)=*Il- M2(2X)= l- X - 1/2(2k+l)& 
,.. . .:: . . . :r. . . t . . 

-- $ ( 4kP + 6x43) $--. l;lai'(24k3 + 68ka t 7&+29)X4, ; 

++EJk'.+212k3 + 392k' + 3ie'k + 103)X5 T t-s ., 
L , . 

- -$(4&k6 + 29-76k4.i'.$968k3 + d788k2' +: 7i66k. + .;93,5)X6 

-&{2880k6 + 23472k' + 84232kQV+ !162124k3 + 173940k' " 

+ 98086k + 22675)x7- . . . ., i X5-2) 

. _ . . . . 

a. . . ‘. 

x=2 
(k +$'/-i 

-. ,.. ,, .( (,$ + - . . . l)1'a 
. . . 

. . . 
.I . 

If MS varies between 
--CD 'alid '0; 

0 and' 1, h' Garie$ between 
The proof of the convergeqc?.of.(.52) ?or 

is'given in section 15. 
A<0 

I. .., . 

k 
'IThe correspbnding values .of* 

= ‘-0.5 'and k = 
-‘2h, M; and. V/so for 

. . . : 1.;4 afe g'iven in .ths:tsb&es- Ia end Ib. . . .* I . ,.,' 'I '. !' ,... _ .:.; . ;. . . . . :' 
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8. The General Representation for the Solutions of (32) 

Zhmraa9 (53 ) . &g& J&Q ;f_laasiign E(H, 13, t), -1Etb 1 
kc a solution of equation ---a---- -- - a----- 

G(E)z 
c 

------ +-s141)=01 (53) 
m 

which has the property that --a- -- --- 

AiJr-7 

-s--m + 

3 /?hHH 

--v----w 

t(A+ ie) 2t(h+ ie) 1 (53) 

is continuous at t = 0, ~;4 A = 0, andat 0=0. Here -- ------ -- --- -- --- 
S Is Kh.m bx (43), an$ A, = -A,(H) = Jr(E)- 

l 

(Sea (43) and (45).) Then 

I+ 
' $((I,,) = E(rz,e,t)f [$ (h(H)+ 18)(1-t") 

1 
dt/&=?- (55) . 

*--a 
whera f(s) -be 1s an qrbftru, ---- twice-differentiablg function --- 
~22 Pas3 XaLiahb, L&.&l bi i& EQtitiQn i2f s(Q) = 0. 

Proof: It is noticed that ---- 

fH= fg=$(l-t2)f', ft =-v(A+ ie)t (5G) 

whero 

Therof ore 

dfkd f'(s) f ds-- 

fHh $ A,(1 -ta> ft, f,=- i (1 - t2) if H ----- - ---w-v 
t(A+ ie) 2 t(A+ ie) ftr fe=G- 

(57) 

Now, by" (55) 
----I-L---------------------------------- -- 

It 3, indicates differonfiation with respect to t. 

'In order to be completely rigorous, the integration 
is carried out along the curve - 14 t Q -C, t = Eelq, 
-+g co4 277, EGt9 1. Then the intsgrands in (58) and 
(59) remain continuous along the path of integration. By 
USG of the property that (54) is continuous, it is possiblo 
to let d subsequently approach 0, 
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9, = 

-1 .’ * : . ..: ,. . : (58) 

Integrating by parts gives-9er-'the last term in (58): 

. 
In an analogous manner there is obtained 

E.xFG. i z t(A+ ie) dt;~di=Fi+~ m 
2 t(h + ie) - I ’ t=-1 033) 1 

: . . . ..- I .‘- . ,.,_. ..‘I : :: 
Now, diffsr+n~iafo'(.~9>. with rsspedt to H, (60);@-th respect 
to 0, ahd multiply by AHa. Th'e.re is obtained.fi;lally 

. 

J, HH +A 

’ ’ . e ., 
. ;: i .‘.:: 

. :: ,, . . 

.,‘. ‘. ..,‘. :: * I. .. : _. 

‘.. ..: : ,.. : 

. 
. 

.-, 
,.,. 

. .: ,: ::,: : :.: 1; ‘, i ; 

. :- 
: '. ,.. . . 

1-U t=1 : .P : - . '.: . .::.; ,,., . ,' . 
. . ; 

. . . . 
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Using th:. last relation of (57) it is sr?en that the second 
and the:‘fqurth torm in the second integral of (61) cancel 
each other, and if fg = ifx/hH is substituted, the last 
term of ( 61.),, vanishes. 

, ingby p.&ts- gives 
Employing (57) again and integrat- 

-. ., , .Js~,“-u.lr I .-. 

E&-AH 

at(fI + .ie> 
ftdt 

EH J-AH / ;-- 
( zt(A -I- ie) 

‘and 

=- 
iAH r-7’. 

- ftdt a * 
2t(A + i6> ,, : . 

. ’ . 
izaeAx2 d1 - t ’ = --- 

2t(A + ie) 
’ . .’ .; ’ 

Using (62) and (63) gives 

JI HH +A R’ %e 

i62) 

(63.) 
, *a c 

dt + 

(64) 

which implies theorem (53); 

0, A Simplificz+t$pn of the Prcbl:em . 

Following the present line’of attack the ne,xt step is to 
investigate the solutions of equation (53) arid.t.0. determine: 
those among them which are most appropria.te,for the dt?-.~clop- ’ 
ment of the theory. 

Ii0 wever , the mathemat i,cp.l, nalys is of t hi’;l c&t i~ori~.$+s. 
not yet been developed to the a&tent necdad irrit~.e’.c&s:e.:under 0 
uons’ideration - that is, ti. thet:gene’ral case of an eoua’t’idn 
of mixed type - and :to work out this mathematical theory1 ------I-----------_-__----- ---------------- _--_-_ -_-_ 

‘The author will develop this approach in a future paper, 

. 

, 
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here would lead."ou'tside th'e sc'dpe of tkd'present paper. 
Instead of this, two simplificat.ions are made., by which it 
is possible .to ". . ;' :i:* '. em.plpy alre,ad,y known math.emat~ical~results. I . . . ,.. I . ,' *. 

\ . . : .J * 
Zirst, only the subsonic case will be considered. This 

. means that the solutions of the equation (30) will be con- 
sidere'd"bhly in.the domains where the equation is of elliptic 
type. Secondly, function F in,(70) will be replaced by a 
polynomial Fm in eYh .which vanishes at X=--c'=. 

:'i In th'o;d'gase of an incompressible fluid where @ is a . I . ; s olk’$$on '.of the'laplace equation there is '.o>ta$ned for the 
stream functi'dh the representation 

*(v, 6) = Im f(s)-, ' s = log v - iB (65) 

- 
in:terms of an arbitrary function f, of one variable. 
(See equation (lo).) 

Generalizing this result, it is found in..the following 
that the stream function of a subsonic flow of a comp'ressible 
fluid, which is-a solution of (32), can be rspresented ip 
the form,. a' * 6 '? li - i .__ -.-.w-.. .-*-..,- .-. . . F‘.' . . . --:--. *---. . .. : ? r' . . . '* ', .A . :' . . ,. i‘-’ - 

:: . 
. . ,. , : 

' 
. . _* 

WV, e> = lim 
EL--r"= 

are functions which depend'upon m, v', and k. 

k= 1.4, Q(n) (n> - . . . 
=lfp!& .-_.. -... 

tablet Ib. 
me 

are .graphically repreaante'd':in -..a-...-. - . ,, . , . . . . . " . . . . _-. . ..-. -0. -. . - 

t 

The romainder of this section and sections 10, ll:, and 
14 -arm?. dey+t,e$,.jio,+g exact:.formulation and dcr%vatio& of the 
f,o%&go.in'& r,.ep.res:e.ntat ion $or the, stream: funct ion!. 1 !"-"'. ' '. , . . ? i.; : . r . -, . . .( : . . . . .!‘ ,, .'[. *J . . . i,i, Ip pir(ie.r" i.0' ;$nk ihi 'ensuing .nalyicis . with, st'&hard' m&h- .' &At ycl ir o iedur el,' equationt(3Q) is reduced %o'the canond-oal 
form Lo($) = 0, (see (46)), by introducing the variables 

'The mathematical details of the proofs in sets, 3 to 
11 may, for the most part, be omitted by the reader whose 
primary interest lies in the field of physical applications. 
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c = h(M) + ie, j-= h(M)- ie " *-' (67) 

(See (44) and'(4ti)':j, 
: - ,?.I. I 

the ~,ukdion,~63)'bec~mes ' ;.' , . .' 5 , : / 
1 .A : . . 8 ,.!. . . . * . : .,,. * ~ . . ,.. 

+ NEt ) - t-I( Ef + NE) -I- 2tt Lo(E)=0 (68) l 

,. 1. . 
The condition.(!S) 'will be ;at.isP-iediif 
regular at the. po;int 

(Es + w/tc is 
t = -0,. :t = 0. . .' . . :,c' I 

,,. ,. . * ,I . . : 
"“ES 

,: 
If now, instead of '$ and 

* 
are considered,theti' L-, becomes ' 

: 

a 
.> . 

L(q.fI*) = $*c% + F$r* = ‘0, (70) ' 

. F =- (NC f Nf)’ 1 ;, .’ I 
(k + l)v4 v 

- f'k-l)+ 2(l-Ma)L~2 , 

$k +;jv2]3[,od-'$(,:-l)v2] " 

. . 

64(L.- Ma)3 
' (71) 

'. ' a ' :, I, . : - , :, .v . 
i . a 

Since A, and .M. ara:.konne:cted* by th&:r.elation (48), - 
the expression F is a function of h which has a pole of 
the secon.d order .a:t .A' :=I,: '0.. ,. And: .--:A = 0 :li.eYs' on the bouidary 
of the interval. ,ofi,vatsistrtioiz ,of. ' X. since, 
co, l>,, An. 

,if M range$ over 
-ranges,. ov,er. .(~a ,, Q>.. , . 

. 
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The second simplification i-s made-by replacing the 
functfon 

. 
In.eection'16" it i's .nr!oved ‘that in.eve'ry interval 

( 'CD, hb, ) , '-Xo i= O;* -t?he oiiginal F may be approximated 
arbitrarfly closely .by: such a polyaomitil. .This means that 
to every:,ho As 0 aab every c ==o,; t+,er+ is det;qmi.ed;a 
polynomial Fm in eh, Fm(-a) = 0 -such that 

The following is now proved. 
’ . .* .: 
‘1” * :': 'L&?&:(67), 'po every polynomialq'F,(2)\) &I eA‘ ,there 

exists a constant c, such that 
.‘, 9 - 

I 
dKPm(2$/~K 

*. 
Pr;'oo.fX ' 

I. I. - . . ,. . . 

: 

r 

=c(~+l)! /I&h )I(+, for h C .O' ' and K.= 0, 1,' :;, ;y * 03) 

S-in&e m . - - 

’ ! _ :: :, ': : ‘i- ZhK . . F@“) = =Ke ‘,, PK constants .: .., _ ,, 
. . . -..-1 Kci , . _._ '"!. :. - 

It suffices to prove that the ine~~u-ality (73) is valid for 
., th[B derivatives of a single ‘term-.lJesh. But dKes'/dhK 

= sKesh and as 
exi &.Q:; &< 2 

K --3 CD K! /(-hs~~:f~~,~,~.~....tper.efore there 
dub hi :+q.ia t .- ,,,.. I . . . " .., 

'In some instance,s it is expedient to apuroximate*, F, 
by the,,sum of a polynomial and a functio'n which beb0me.s in- 
finite as 1 

ha 
at h = 0.. .- . . 

In this cecond case it is n.ecessary to use the re&lt 
of reference 3, sec. 4, instead of theorem (83). 

Note that id (4.2) of reference 3, 
- P- .: '.: 
C&(k + lj'& i hjkca 

should read C.r, (k f.. 1) 
k+z; in (4,3) [r (n"+ i>]-" should be 

(n - h) 
r 

. 
a. *. 

. . 

.- 
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In..sections lO:,and 11.&n i,ntegral...re?regentation will 
be derived iti"terms ',o'f a$alyti,c 'fundt,iqnSs ,for.,the solutions 
of LA) 'the equaf'i'an'~~r'e‘s~ul,ti~ng f,roq! ‘re,placing F by Fm 

. in s($*) 4 '0;' that is, 'Lm(@')' = $*- f F,Jli = d. 
: .I -.. ., : . -" r, .>. . . . ...: : . .g ,. ., ; . . . 

. . . . : ; ' . 
1. ' . . . 

Lemma (7*6j:. If ,?E*(‘r, T,,"t') . ,b +:polution & eauation 

. c;,(lt*) = (1 - &ED E t‘ - ? -I E* + 2 9 t p*- -I-. FmE*J = 0 1 !X!t ! 
(75) 

and I*-/St 
then t 

s continuous at the point t = 0. & [ = 0, -.- 

. 

/ . I 
.'+El*(i, 1, t) f (+ t(;l .-:+))dt/(; - ta)l" 

Fl 

(76) 

' uhe.re a I rf(sL an arbitrary analytic function of a complex 
is a solution of 

-- 
variable z, ., , -- - : a. 

177) 

Proof: Differentiating with respect to T give6 
_* P .I \. . I .j+* . ,: :' ', , J 

. 'I&+ f-&t'/. ( 1 : t 2, I" -' . 
I,.. 

" ' ', " (78) 
., . 

Differentiating again with respect to 5. gives 
' , p, ,!' 1 .:. * . . 

. q/f? =,l,.l 
i 

a l/2 + Et1 f dt!(l: T t 1 2 1'a - t ?. (79) 

1 . - 
'If it is noticed that . 4. . 

!,. '.' 
-f [’ 2 

= L(l ,T ts)f' and ..*,ft;:.'. -[tf,l 
. *.. . : . ) ;’ , *, . ,, 

where -.: _ 

there is obtained 
: .* : . 

.I 1 
. 

ft = - 2 
and therefore 

,. : ," ., . 

(80) 
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(by i.ntegr,ation by parts). Substituting the obtafned value 
into (77) gives . 

c 
which implies lemma (75)* 

' . 
.11. The Representation of the Stream Function in the 

c 

Logarithmic Pike for the Subsonic Qase 

Theorem (83). LB .. Fm( 4? > * a analytfc:fhnction of 
a real variable, A, def inad & X<O, which possesseE the 
properts that . : \+ *. t '-, . ,.. L * : * ! 

where c & & suitably chosen constant. . . 
. 

Fur'c'her, - let Q(")(2'A), n '* 1, denote & & =1,2, . . 
of functions which w definod.m the recurrence formula: 

(n+$ (2n+l)Qh. - ,+.Q$$ + ,FrnQcn) = 0, ~i(l)=.-,,~ 

Qcn)(a) =O, a< 0 1 
(84) 

Finallx, m g(c) & e ana,lstic function regular in a -- 
domain B which contains the origin, Then -- 
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will be a solution of --- -- 

+ F,.( ?A )@ =. 0 . . 
which fs defined ffi gverg #impI& connected 
the intersection of --- - H and ZI, wherl.H. 
82 < 3P, h<O. 

f Fm(:!h)&* 

036) 

dom& lying JJJ 
denotes the domain -1- - 

: .m ’ ’ 
l/C 

E” = 1.v; . (t .t l/a) 2++$ n > ( 2A ) (87) “. :.. ,.. .. 

Ga(ET> = (l- ts)EZ -- t-12% +2lt 
tt .c "i-f 

+FmE* =O 1 (88) . I . . : . '. . 

(see equation 76'), and that 
t . = 0 3:" 

E-2 / 5 t is regular at E = 0, f/i.. T formally s.atisfies cqtiation (88.): In fact, 



. (n-1) . . . -(n-a) t an-. % ?-aQ:A 

I7 (90) 

or 

: Gs@*) = - 1 m 
. . 

- , . . (91) 

which implies (84). Now ) proceed to ,the proof of the con- 
vergence of (87). If-A is a dominagi of B' - thkt is, if 
for all derivatives ., , :$I+$ d,$ : .: !x = 0, 1, 2, . , ., it fol- 
lows tha.t 

This will be indfcated by 
3 $.c’S. ;:. : &, A >a B (93) 
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,(n+l) 
(2n + l)QA -(n) 

cQ.~.~ ,+ 4c&X)-T (941 
t .'a 

&x -(I)= 4c/(-x)ab . , i(n l(a):: r '0 . 

the functions 
a(n) .; ':*:, * ' 

are vntrbiiceh. 

a?@ from this is obtained 
*'. 

(96) 

Thus, thk s&'ies 

converges for 
,. 

I 
A- -< 1 o;.' Aa + 82<4h2 

-2h I 
/ 8 . . . 

It is shown now that 

* . 

(97) 

(98) 

(99) 
, .,* 

Cle~rly,~th~ ;' l-g> * and all derLvati,ves d, Q R&+dXK are 
pos,itive. 1 Zurthes, .by (84),;(94)", and (83) it follows that 

. .Q( 1) ,&$.d. . ;( 100) 

, . 

Equation (99) follows by induction. Suppdse it holds for 
some n, say n = ~1; then, b.y (84).:and (941, 
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f 

’ . 
. . 

!,:.. ’ 

> . ah 1 

Further, qfnce.:all derivatives -bd of are com- . . . ..".' .,. ..,, . %p 
Q"(p+l> 

I I ! a.- ! ;. . ., 
binations of:' the dgpivatives Q-' of t 1 

A:.: qlFL) with positive 

coefficients, an$+,,~in~se' the expressions for '(PL+ 11 
QQ in terms . . 

where ' 'f(k)',' i' an. ar'b'itraky analytic ?%h'cffbli: 'of a' c&$lex 
variable Z, is a s.o.lution of (86). The series (lo,?.) con- 
verges-‘:un,iformly for t1.z '<3X 2. 
FJ* 

Ther'kqbre' :$'ft'&'+: ';-'~'~l&!k>ng 
iti ( 102) by the r.'ig'&-hana s'$3,i .of (87): $$,k-'b'$iie'$:pf :"I 

summation and integration in the' resulting exBk.eBs'io'k I&$' 'ke 
chang~~~.,.~.p..obtain ,.,. .,: . ..-)I '3 *. -. ':.' *.. - ,.' ,-.- . . .*! .- . . . . . : 

----em ---------c-u- --m--- -- 

o> 

lr (>) is the gamma function lo e-' X tP-l dt; so, for 

integral values Of P, r(p + 1) =p! = p(p - 1) l . ' 1. 
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: : :. - n =.. 0 , 1 ,, 2,,. . . . . . . . .- . .I * I. _ I 

Then 

m 
I. 

7 
’ v~cj 
., ,. 

(n-i);' ) 3 Il-- 2 

(2--1)(2n--3) . . l 1 g(n)(f) = 

, 2n, . * 

r(2n+l) i(n) 5) 

22nP(n+l) ( (105) 

Substitute the last -term of (105) into (103) to o.btain the 
exprsssion. (.85)., : - . . . ,. I. 

, I 
. I ‘<. ,. : : . , .’ .. 

12:, The Evaluation of thk Coefficients 'Qtn3 (14) l 

It was.hroved.in-iection'9 that if F 'is replaced by 
Fm the series obtained for E* converges, and (85) rep- 
resents a solution of (86). 

", . . 

Q’“) 

It is important for ~jYaitlbal'pur$oses 'tb compute the 
explicitly." Since m can be chosen so large that in 

----------------------------------------------~---~------- 
lIn th&s.a.nd the:.f.o_L-lowing section adv'&tdge is taken 

of the remark in footnote '2 o.n..'p. 10.. : 

'In a later paper 
Q(n) 

the corrections ts'.be, made in orde-r 

~~n~~~st~r~y~~o 
obta.i‘hedr i'n the' a-b'ove-described 

obtained using a polynomial F will 
be aeter@ne+, ., _... It ~~.1.;I,.he...sa.en..that.,. in. goneral, t&se .,. . . . 
corrections may be neglected. 

." . . . . 

. 

., . . 

. ..I’ , t. . I I 
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the giVea ipt4)rra1....(rLy,h~), A0.S . -' 0, Fm . and any required 
number of the derivatives af Fm Uffers'by less than any 

w. prescribe@, c >O from the corresponding derivatives of F, 
, th:e.., PC?? will be:comp,u;lte&..tising the. Function ..F 'instead. 

of' Fme &s iill b'e shown, the expressions obtained' for 
l 

Q(n) consist of a finite number of rational and logarithmic 
terms in . : -: .. I . ., .:.'*I:. * 

T =: ( 1-M") l" (106 > *. . . . . . ' : .z ,. . :: ,' .,'... 
i' Ad M,' 

. . . __ ; ' ;;. 
(Far the relation between 
second equation of (84) 

see (48).)' Frum the 

\’ 
. . 

: Q(5) 3 ah = -2 F a( 2~ > aT 

,. r i 
, * :.. 

;J ;.I+ .,. ,,:‘i: . . ,: ‘. 1 . . . 
ac . 

.-: .:. 'T : 

;[ /i(l+k) ,& + b-7) + 4(k+2) =-- 
‘1 i T e T4 1 

T2.. ‘!i 

(L’ .; ! 
\ 

. . c ‘, ” . 
. r. .‘Y, ,7, ::. A .: : . 

4’ . . 

_ ( 3k-llT2 r’.:.. .- T2. 1 ” (T'il)(l-h2T") 
dT 

r 
*- 

,‘: 
! I 

!: “-,J.;b !:-; . . . -2. , ,, . i , .- k-l l-I- k+l 
+ (ka-14)k2--1 log l-.ks,T 

,y: :__, . .:. , .5 -i ;. j .A . : . . . ,. - ..v ..-.e A- ..a-. P-"'-. ." * . . . ! 
Setting n = 1 V' 

*.'.&.i:' .: ',.. n : "f . . 
in the first express.ion of (:+I gives 

.-."w'. .,...," ._.. + 
- - . 
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since from (d"S/dh")x = 0 it follows that 
= -.w. t 

I p . . i t, . ." - '. 

Q( n> 
t.4 " A ,(. ~m)=Q~~)[-m)= 0,. :n = 0, 1, 2, . . , 

t '* ,,. 

Thus there is obi%GXned 

. . 
Oi. . 

Q( 3 > (lb 5 FQ. A F8dh + go ,$“J (IlO> 
-yzu’ 

where 

FA = 
1 

-4(3k-7)T4 - 2(3k-l)T'I 

and 
h 

F2 dX= 25(k+l)' i lOk.(k+l) 
9Ts T7 

+ 39P-8Ok--115 
5Tb 

+ 4(11kz+48k"^+59k+201.- 41B4 -96k3-18k2+312k+91 
3( k+lj;p;3.: '.- - . . (k+l)a T 

+ 2(3k4+17$-15ka-21k+8) T I (3I@)"(k+l) T3 
( k-$ ).? . .ck ! : 3(k-1) 

In ordek to obtain '#fcom a,* (see- (69).) it!.is necessary to 
have . * ! .r + ; '7 

FE ' 
' .+ 

H =exp -. 
(S 

\ N(dr+t),= ;..i,d- 
(l-bf 1 1 -u3 

. 
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., . . 

I . 

lPhufJ . iCii. . . . . . _. m. '.: *:, . ,. . . & . . " :. . 

$ (.v,Q;), F HIV 
f 

In g(c > + 
r (2n+l'); 1.; ,. : . .'! ? : 

,I : 
, f&s, ?T,..p 

:.. :.t _ .' .I ;> : ,_ !. P :.1 22n,r(n+f) . . 
.m] (112) 

n=z : i -. .,,. ,! "' p . . b -. 

where Im = fmaginary part and. 'Jn) ( t)dt,'&0)(t) 
. . .!, f' .- . . . . v .'. . _. 

= g(5). 
-. '-.!,.. 0 

In order to evaluate'the terms of*'(l3'+) *e and *v 

are needed. ' I .v ; '...,.a . . .: -' . . : . . ;- * . . 
Differentiatang (112) with r8spec.t to 8 and to' v, 

1 
l ‘1 (113) I 

1 Im g(') 

, ,The y,alues of H., 
. . ( .: 

'id those 

m-3-a 
are giv'en numerically 4' ' . . . . 

fn tabJesIIa and IIb, respkctive1y.l [PablesIa and Ib give 
t,hgir ;gr&phfcaL regreseqtEat~ons. . . r.- .- '. : . : 
Bemark: If the origfn is moved and X'is. replaced by ?b*+ a; 
that is, setting .' . ' '. 

. . , 
p:.= t "+ a, i? = 3+ a, 

-: 
a.real, . 

* . . . . 
equation (70) assumes the.f.orm. a . ' 

'Mr. E. Ostrow assisted with Che'computation of these 
tables. 
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I .’ 
. .’ .:..- .-, .* e-e 

The general formulap(see (86) and (7'7))may now be'used for 
the solutf.ons of (115). 

Sfnce .F-*= "(NC + Ns)-&ee (71)) it;:' is afound'that Fc, 
= y(t*-a, p-a). Using (109) gives ., . . 

Q(“> 
a 

= Q@>(z+za), H&=H(2h*-22aj'. 

. 
'Thus, the generalized formula (112) becomes 

wbQ> = H [2X*(v) - 263 Im 
[ 
'g([*) 

* . . co 

+ 7 
(2n)! 

n-1 22n(n)! 
Qtn' (2h*(v) - 2a@' ([*I 1 (115) 

m. 
= 

. 

. 
. . . . . I, . . . -1;; The Behavior of:.aSdbs~n~c'Flow at Infinity 

At the point *a +. cc + iB, 4, B real, of the hodograph 
plane which corresponds to th.e point1 e =ca of the physi- 
cal plans, the ,stream function $ has. a s+ngulWarity. This 
fact leads to the study of':th'e singularitses of functions 

*aetisfying (46)., 

If point a is a branch point , .then the use of formulas 
(8s) and (69)*yields $a singular,fty which pos's'esses the de- 
sired features. Indeed, ,. . * a 

‘_ .I. .-, 
, . c= Alvj ‘- ie (117) 

I ----w-m.--_--- ~---~,----~-,------,----,-------,,--,,-, I 
1T;I1 s 'fi'e#jy$ .ytJjd't t&&yi';;y&)-' ,.$I~ 

. . , . .I 
,. 

= a'.(of‘the physical ?line), 
obtsins 'st .point 

e 
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. , 
. ‘w 

is a stream function which 
becomes infinite as 1 (a - 1 like l/(a-log v+ \Q),'s 
ible flufd. : ,,:' -. . . . s . ~ . 

If I however, point ‘a is not-a branch point - that s: 
the function * 
. 

'2'(v)((E-l)10g(a-L)-(brl)l.s(aif~+-. . .} %18) 

I . 
is obtained, which is not a single-valued function. * . . 

For the sake of brevity th.ecase of g = log(a - c) .' 
is .not discussed, but here-also; in general, a many-valued 

"function is obtained. 
. . : : 

The function (118) can, however, be made one-valued. 
by replacing the many-valued term (8 = arg c) by its mean 
value (in the sheet under consideration). 

Clearly, this new .function will no longer be, an exact 
solution of equation ('46), but ,in many instances it will 
not differ very much from an exact solution.' Plainly 
this procedure may be refined,, . . 

It is,' however-,! '%f:A.nterest from a theoretical point 
of view to determine (.exact).solutions of" (86.) which are 
single-valued and have a iogarithmic singularity at point a. 

1 Clearly, it ,is sufficient to find functfons for equa- 
ticn (86) which possess a logarithmic singularity. 

A function 

w*b, 8; A,, 9,) = wet, f; to, Co) . . 
= A( 5, 1; t;‘, to, log / r-c, /+ B( c, f; co, 5,) (119) 

. 
IIt is noted that dn'*this.'case expressions (136) will 

no langer,:pe, complete d\f?ferentials, whfch fact may cause 
-some 'd'Xfi:culty if a ,t~ an int'&'i:cr point of the domain. 

21t*'ii 'assumed here'th'at': F-.' fs,replaced by Fm. (See 
sec. 9.) . 
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which, conskJ.dered as a function'of %, 5, *s-et &sf:i.es equation 
(86) in the whole plane, except at the point .k:= to, is 
termed a "fundamental solution" of equation (8.6) with the 
affix at C = to. 

Charlfp, $ = W( .it, 1; a, ;S) represents a desired 
stream function with a singularity at t= a. ~ 

. 
Notation: If @-WC, c an arbitrary constant, is regular ?t 
point a, th.e-corresponding flow can be said to have a pseudo- 
vortex at infinity. 

:: 'The functians, .,A and B May be obtained in the follow- 
ing manner '(see sec. 7 of reference 2): 

Let 'a n‘ew vsriable be introduced: ' 

. . . s . L =5-t, * ( (120) 
. 

. I 

Equation (86) then b,ecomes 

A"fundamentaI solution of.(121) with the affix at !.l 
= 0 ~511 be a fundamental solution of (86) with the affix 
at C = C(OJ. ,' .'. 

Substituting V ='* alog [, + $alogTI+B, 

B = B( ~ i' ~1) into (121) gives 

* at, P, + F,a 
. 

. 



. 
:[,[,Trn[-,/ Gd[,.r]d~sd&,+~ 1 -. :':;125, 

. . 
Bgwk.l:,' As indicated e,lseyhere,: the theory of operators 
yields an alt.er:qa,t,$,xe exp'r.ession.'Ifor a. : 

. . I . ,' . . ..'. L 
In references 2 and 12 a functfos E was' considered 

which fa a solution of (7'5,) ..and.t.herefor-e which when sub- 
'st-$tut~~‘%nto ( 76) 'for ,9 yields 8 solution of1 (121); C 
has the follo~,~ng property:.. J'! . . 

: !,. - 

.; . : C=iU 
where,..ez is again a.;F,:-gular function of,.; :t 1 c. C1 . . (see refer- 
e,nc&e'W2, form&s (1..l?.),,,.i(;.i;14)', and $1.151.). . .;: . 

If the function F; is denoted by e(~l,?-l,t;~~o,To> 
5 correspondfng-to equat'ion (l'E?.l'),' then .: . . _ .: 

: i 

, . 

* ‘l~h’g‘:-f;hc’ti~~.~ Qb)( v/‘ao). which correspond to E are 
not real. This was the reason that in .r.eference 3 and in:the 
present paper a n w solutfon 

Pn)(v/ac). 
E is intrbduced which yields 

. real‘ fu,nctions Q 
.In reference 12, sec. 1, the function e is determined 

in a form of an infinite .series, 
It is observed that for various equations E can be 

represented in a closed form. 
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. . 
The function W sat iefies .x&&tioii (86). Cleariy '. .* ; 

. . 

I_.-, .; 

+ A 2 Jog [( X - +d2 + (128) 
; : : . . .’ ,G! . ., ( 0 - go > “1 +,- A, . . . . i 

. I., ; . -1 ’ 

where h,,A2, and AJ are e.n$ir:e functions, is also a+solu- *I. . 
tion of this equation 'I". , . . . ' 

is regular at .f.e a, then ft,can be saidithat tha.corre- 
spondfhg flow has a'gombined ppeudo-vortex and'pseudo-doublet 
at infinity. 

. . 4 *I 

other univalent solutio.ns of (9:~)~ 
singularities at, ,point.: '-t='a. . : 

'my&y be found which have 
1 *: ,,! . 

Remark ,2: . -T- In. the case where th:e*'d'ezieity $r'&sur'e r$$*ation 
iB of the f'arm . .p. '!.A + % the funct.i:ens. : PI* *.atid e * are 

respectdvely, where ':X = 
! 

noted that in this garticular cFtse new singularities are ob- 
tained by different$at,ing-;y'*,.w%th..respect to ")i', :. For in- 
stance, 

de a singularity which is infigj+t.e.,of +he f3ret ,order 'and i.g ., --.,a . . 
fndependeht of 

&q.,.. !.-‘ . ..'. i .* 1 
'A 

y- ., . . . . . . . . 
. $ I. ; 

;, .a0 . :.., 1 ; ., ,* L-7 ' ., .., . 
! . . . * '.! .' 2 .:,. '. ,'. . . ,, ..,I. 

. : . 



: 
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: . . . 14.. The Passage t.4 ithe FhxqiifbjL:$ Pl;*ne". . . . I.. . . . - -. . -- e ; -- . . - .,.*,..-. --...L . 
in the folLowing a procedure will be described for de- 

, .termining the.,flo:w bn‘.the .-ph$&kcalt;pI%ne. o<k'F!$s.p:n 
stream function, +(v,e.), given ixi'the holograph 

ax 
:: Considering Q-, 

from 
a\lr ax w’ & 

. . xaJr+aya* 
a4 a~. aa a~ --+-- ax a* a~ a* 

: .*. . 
a* ax ai --w-+- 
ax a@ as :’ . . 

it is found 
:. -. ..: *p ~ _ ** *. - - ;: 

(131) 

.. i . . 
that at* every poin6 at-whi6h 'the'Jacbbian : ,: ,':..:I~:? 

’ : 
(see (24)) does not vanish and is finite,'.,the-relat:,ions :- 

'. ,. 

: . . . - . . . . . . - . . . . b 
hold. Using (24) yields fe0.m i 133) 'and (i32)'-":.-' . '. " 
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>( 
d(logv)-if.6 PO eieM2 +-p- vQ aedv (137) 

Along a streamline, $= constant; that is, $,dv+\FledQ=O. 
Substituting d8 = - \fi,dv/\lre intd (137) gives for ihe 

streamlines in tha physical plane the parametric representa- 
t ion: 

X =- 
s 

p,cos 8 IX--M") *,-e:s 4- ve\Lvsl dv 

PV2 $9 =- s PoCOS 0 [Q’E”+ v29 3 dv + s P, cos 8 Ma*lg 
PV2 QQ 

dv 
PV2 

i 

(138) 

y = -: 
f 

posinP6 [(l - M2)*62+v2$v2J TV 
. pv2 we I 

J =- 
s. 

PO sinfj CQe2 + v2 +,*I 
Qe 

- dv + 
p,sin 8 Ma*8 

.I * 
dv 

pv2. ., PV2 . 

where,the integration is carried out along a streamline 
V(v,@j = constant. The integrals (130) represent a genrkal- 
%zation of formulas (13). 
sions (691, (85), 

Substituting for $ the expres- 
gives a parametric representation for the 

streamlines ,in terms of an arbitrary analytic function of 
one variable. 

Suppose that the stream function $(v, 0) of a com- 
pressible fluid flow is given, where \cr(v, 0) is def'!?ed 

--- --e-m-- -". . , -.. .-.-ee -a A.,. -.. 
IIt is assumed here and in the followlzg ths+, 

*V 
vie and 

are. univalent functions in the domain considered. 

. 
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in the simply connected domain H (with boundary curve h) 
in the hodograph plane, and has a singularity at the point 
a (the image of z = a). (See, for instance, fig. 2b.) 

Just as i-n -the -case- bf..an. incompr'es;sible fluid the con- 
ditions must be determined in order that the obstacle in the 
physical plane (which is formed ,bp the image of the boundary 
curve h of1 H) be a glosed curve,' 'Clearly, kheW:necessary 
and sufficient condition in order that the image of E in 
the.physYica.l pl.ane be single-valued is that 

I . _ 
_ l- M2 $9 +"i $2 v2 v 1 [ dv+ $ 

V 

where b is any simple closed curve lying entirely in H + h. 

Since the integrand of (139) is a complete differential, 
t-he valu'e~of the integral does not change if '1‘ is-:con%inuL 

.ously .deSormed without leaving, H. + h. and without passing I 
through the singular point a. . 

Thus, in particular,, if the boundary curve h is chosen 
. * .- 

for 1 that d\l, = g dv + * d0 = 0, that is, 
- . a0 

along h; since h is a streamline. If 

&is exoresslon is . inser &&&jJ&Q (1391, fih&-.E.cen~Jon is ok 
&gined tbqt the image of h in the physical o&ne be a, 
closed curve in a form analogzx-( 15) and (16). I : . 

On the other hand, the relation (139) can also be--written 
in a diff.erent form which is often more suitable for appli- ' 
cations. ,: - . ., ', ,; 

. In section 13 some standard types of single-valued 
singularities were introdu.ced, that is, for every point a 
='&.+ 16 functions-were defined which are single-valued 
in the whole subsonic region and which satisfy eauation (46) 
there, except at point a -where they become infinite. Such 
functions are . . : ., '. * , :' .: .-, *.- 
. . “:. .’ g&? 1 ( v, 8; a, e> = w*(x;g;x,, 0,) * . *. (1401 
, . ..‘.... ._ . ‘, ‘; ‘., :. , . : . . 

_ ..a. ” .,. . . . l..r.~.,~‘i.s..as$~med here tgkf .t.fiye...pi~.;t - .v.’ = (?*-. 

",:terior'point of.domain H. ' If v ='O '6 = 0. 
i.4 not' 'ai' in- 

is sn,interior 
point 'it is well to proceed.-~irn'iia~ly'.~ut,.,u$e" ai var%abl$.s,vl 
and v2 instead of v and 6. ' , 1 .: 
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w(q anw(o+h,8; x,, 80) v,@;a,,B)= - 
>* 1 aen (141) 

where W* is given by (1191, S = B. and 

f-1 - (1 - M,2)1’2 1 + h(l - Mo2)1’2 I” .- 
Ll + (1 - Mo2)1'2 t 1 I (142) 

1 - h(1 - Mo2)l's 

Notation: With every singularity wy n = 0, 1, 2, . . . 
may be number Xn + fYn which will be 
denoted by 

B( w( li ) > = Xn + iYn (143) 

=l % e.“(i- ’ i2M2 hldtn) + i wvln)] dv +[ W+n)-iwti’,“‘]du} 
C 

where c is an arbitrary simple closed curve around a, the 
sense of integration being such that a 
1eft.l 

always lies to the 

Let it be assumed now that the stream function $ can 
be represented in the neighborhood of a (the image of z=p) 
in the form 

B 
\tr= 

c 
AnI+) + 9 

n=l 
(144) 

where .A, are constants,-and:..q. is a function which is 
regular at point a. Since'curva c ma e chosen for 1; 
and since the integral (137) in whiah 0 W n is replaced by 

ISince the integrand of,(143) is a c6mpiete differential, 
the value of the integral is independent of the 'choice of the I 
path of c integration. 
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. 
\II vanishes,it fs concluded that an alternate form of the 
condition that the image of h in the physical nlane, for a 
flow the stream function of-which is given by (1441, bea 
closed curve is 

*' . 
'.. 

(145) 

It will be of interest to discuss in more detail the 

pvaluatfon of the 
when k=-L. 

. .dn-4.hem special case, 
.a . ', ,.-. 

As was indicated in section 13 in this case 

,(o) . 1 = z ldg[(i-ko)2 + (a'-j3)2 1, ,Il)= 8-B (146) 

-. : . . . . (h--X,)2+ w-e3y 
l .L. ..: .I’ . ; 

where CL- + I@ = a. .r . . . *. . . ..d. . . . _ , . I . . . :: 

A = 9 log 'D+(v/ao)2]i'2 -1 J 
(Cl+ (v/ao12j II2 f 1 1 ' A0 = $log 

. 1 * -t 

.z r/2' Cl +'(‘a;/B,) ] -1 

. . b Cl +(~/ao)a~~'2+l~ .. . - ... : * . . . . . . . . ".,. ,..._. ~. * 
In addition to these sih~ularities are'obtaih&(in this 
particular case) by differentiating with respect .to h, the 
singularities _. :.k: '.: ; I .r. ' .,. . ' ,I' , -- ". . . . . . . . ..- . .- . .^-“A-... ’ l : - ’ I,. = aW( .j A-‘&, *. 

(147) , ; ,. )L-. .: . .* - = j’h--X,)2+ (6-p ’ etc* 3. ,.;:; I _ ._.. . . _ . J . _ .- '. . . . . 'I ., " _* . . 
Substituting 

. ', 

. . 
* w+(oj.; ".' 'FL':. :.,. ,:,, l. h - xo .'* ,... * .w.. "",,p-K. 

m - ho)2 +.(.e - +P,>.2Jv Cl + -(v/aO)2] %'s ., : . 

. 

. 

. w,(y)=: + ,e -.B . 
. . :.c.( ic’-ho)2+‘(‘tL~~)” J 
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wv(l)- " ' :.: 2C:'h - x,)(0'-- S>". ' ‘;::'-,;..;,. 
t-h-ho)a +(~-e)T"~[l + (v/ao)2]'/a ‘.:L:Ze. 

, : *. w (l)= (h--)C012 - w- aPti 
^ . 8 HA- Xo)%(e - fi)2) 

or 
: 'L,( &) ;. '! ', -(A.-ho)? + Ce- fiJ2' r * . 

[(A.~A,~)~~: (e-b)"3? v L.1 + (v/a,)" 11'2 

w b3),= -2(&-h&9--1 ' *. .:. 1 .d. 
C(h L X,)2 i (0 - gbyF-- 

(148) 

into (143) gi+e$ the corresponding values 
k ='O,l, and RtW(ol)) = X0, + IY,,, 

For instance, 

sin e(x do> a- 
l 

dv 
V2 

'+ (1 t (v/ao)2)"a(e -@)'sia 8 
V 

+ 
[ 

sin @(L-a> - (1 + (v/ac)2)1'2(0-@)c0s 0 
V 

dB 
v 1 ) 

I Verification that the expressibhs i136) are comulete -2,-------------a------ a--- 
differentia&s..+ To show tha.t, dx -- --"Y-z--,, ,7. as ,;iven by1 (136a) is a . . . ..a _,.... ,-,,,-,,--,,,---,,---,-----------,--------,---,-- 

%$m(1~6a]~~~~~'%e dezoted in this section the first 
expression of (1361, and by (1aGb) the second expression. 
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coinpibte differentfal, it.ds'necessary to'pEove'tha.t.'the * 
coefficients a and b 

a = PO 
_ cos e( 1 - M")'J16, -9.i; 0 *, 

P2 1 
i . (149) 

cos 8’ sin 8 = b pe P PV . 1 $0 1 . . ‘. .* I ; ’ ,. 
of dv and d8 'o?-the right-hand side of (136a) satisfy 

* the relation . . :... 

ba ab -=- 
ae av (150) 

Recalling (361' yi6l;is ,'.-- .* ..- ,' 
. 

aa P& - M2) d\L -=- av PV ae (151) 
I . ', 

: ,. c ., 

so. tha,t I l . 
. '1. . 

Ther:efore 
aa -b'.e..= PO 

ab = 
av PO 

I &OS 8' Q '+ CO8 8, 
- v2 0 v 

:.. +' sin e 
PV2 . 

: . 
Thus it *is ne'ces.kary t,& yprove that ' I : I. '. I 'I . 
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. t* : , *... . .,. . . 
If use is made of (30) a.&.in,' it +&&&y'only to show 
that .,.. ,' * ; 

: 1 ‘: . . ; .- ,, :...:. ,.. 1, -- M2 .=,.‘PV +,L-, ‘: 
, PV2 p?, pTi’ .. 

:’ . _ : . . ‘: MT =. .TV -g(l”g P) 4 I. ” 
1 .,’ 

..But from (25) it is:known that .;_ . . ,I .* ,.;j 'i * 1.. ; . . . 

1 k-l,.‘:’ . 
so that 

(156) 

(157) 

(158) 

v g& (log p) = - V2 
2 

a0 .' 
- $ (k -.l)v2 

,. .,,.... 

If this is compared with (31) it is seen that this is exactly 
equal to -Ma and it therefore has been verified that the 

* 

right-hand side .of (136a), is .a. complete differential. In a 
similar'fash'ion it might be shown that the right-hand side 
of (136b) is also a complete differential. Hence, since this 
is the case', it follows that the integrals (138) are inde- 
pendent of the path of integration, 

II; ,A nagof of aLauxil.iarv lemma.'- In'..the following 
it will be proved that F( 2x’) ( see sec., 9) can be approxi- 

,c. m 

mated by polynomials Fm(2k) = ,Crn) es,SxI ,Crn)= 0 8 0 
s=o 

in every intervai (-a?, Lo),,. A0 < 0, and indicated how to 
determine the Fm(2X). ' 

If 2h is rep1ace'd.b.y log. X;: the F[2h(X)1 is a 
continuous function of X in the interval (0, x0>; x0-= 1, 
and by classical r..esuI.ts, ft. is obvious that it can be ap- 
proximated by a polynomial in 'X. ii will be' seen that it 
will not suffice merely to approximate F, but in addition 
to this ft Gill be possible to require that any given number 
of the derivatives of F 
( -05, A,> 

be approximeted in the interval 
by the corresponding derivatives of Fm. 



It ts, ,,.howevgr, of int,qf.eqt to give w more explicit 
: . . form of ttie. a@,~~.bximqting,.polyndti$ls. .-$hi- 

possibl'e to ;deterpinG th'e1,corr;.?cr~~qns,~o‘i;j' '"GWii TY 
tla:make it 
.‘*'p%tiLined. 

in section 12 which have to be made 'In drd&‘t'o obtain fnnc- 
tions 

4 
Q(n) corresponding to a given Fm. 

,. ', (- If -.L 
If M "* 

;a.. 
increak'es 

, .,y .\ . . . : 
steadily frbm" 

!.,I: r,.! [ . 
oto1, A -'* incr&ses * 

from -= to 0. Since the relation HaA is a one-to-one 
corresppndence, *her.? cor.r,esponds to every X0, X0 < 0, an 

'MO = M(h,) < 1. Therefore, if x+-03 ( A,), then M(A) E(O,Mo). 
For M.2 MO, the-function 

F= (k + 1) 14" [-(3k - 1) M" - 4(3 - 2k) Ma + 163 
S+(l- M2j3 

may-be approkimated by a polynomi~~l F,. oP the (2n + '8) th 1.. 

degree in Ma, 

* 

.- F,(M) = (k6> 1) .$ --(3k - 1) M4 - 4(; -. 2k) M'2 . 
n l . 

. - 
. L 

+16 
. . i IF 

(u-3)(-1)u M2u r (159) 
Uil~ 3 

L. 
Only a 'finite number of powers--.of M2 
will now be sh.own that :N2 

appears. in (149).. It 

convergent series. s 
can be developed in the unffornly 

: 1 . *. _ 

Instead of coasiderin$: Ma; it is well.to introduce 
.. .. .- '8. . .a --.v., ., 

. ', 
S = 1 - (1 - M2)"' (161) 

Since M2 = l- (l- s)', it will suffice to de-termine the 
series for 8. 

From (48) follows 
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I-. 
.’ 

I I 

For sinplicityfs sake ii w:'ill 'be ass',moc."in the following 

New consider the function X = X(s) as a function of the 
complex variable --- 8, and tnvestigate its behavior in the 
domain [sj <l. 

penark: 
g + .qL 

is a many- ,., 
. 

valued function because ang integer may be take'nfor H. 
Since, however, its branch points stl+hD1 and .s=h-l-1 are 
outside 
branches; 

ls.~;e~ef~;eis necessary o,ni,3r,.to consider :p%e of its 
H 0"'i =. s 'chosen, so that whenever 

X(s) is mentioned this branch yill be always understood. 
i i.. 

In'order to pr:ove:that th&'inage of IsI< is a schlfcht 
domain in the X-plane it 1,s' rioted at first that x(s), s 
real, is a real function,. and,therefore the image will be a 
domain whi~ch is symmetric,:with respect to the real axis. The 
ip<&glq .cf,. 8 =. + 1 will'be' the point 1, and the image of s 
= -1 will be a point of the negative real axis. 

It will, be ihown that,. 'if- ?“ctj'= arg s, var i*e's $+om 0 
.,to n¶ " . 

Xmiqcreases steadi'ly'7"'~~~~'tt,~ng s = ei@ yields 
. ../ . I 

!X I = 1 1/2h ", 
(5-4 &s$)1jr2' M' "" 

M = (l+h-l)' + 1-2'(l.+~h-1)oos~ 
-(h-l-l)2+1+2ih-l-l)cos~ 

(164) 

.., 
. . 
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and . . . . . 

(l-h-r)2+l+2(h-1-l)cos @' ' (165) b 

p’=:’ ‘, 
E t 

'fl+h-1)2+1-2(l+h-1)cos@ i ' .: 
5- 4 COB Q 1 -: , 'S, 

-4 -l 

- +(h-1 

h - 
-l)2+1+2(h-1--L)cos + 1 

= 4( h-'-l) (h-"+l).- (h 

i 

-D+2)cos Q + cos2 4) 
c d 

(5-4 cos' @) (h-1-l)~2+1+2(h-1-l)c‘os @ "- 

For:.all vakes. '0 5 @- 5.n the:,expr+gsion. (165) has th,e same 
sign as _P. The denominator of P is always positive, and . 
the numerator is positive for -l< cos@Kl. Clearly for all 
values of . a., O<@< TT, P, and Itherefore ( 16.5) is _pos$4f,ve. . . 

Thus. the boundary curve of the image of Is]<1 .is +. 
curve which does not intersect itself. By classical the'orems 
of theh-th:e.ory 'of functions the domain bounded :by. this curve 
is schlicht; Clearly it includes in its interior the domain 
1x1-=1. .I .:. 8 . 

Since the image of Is] < 1. is schlicht and includes 
LXkl, the-inverse function s = a(X) is regular ifi 
[Xl<1 and by Cauchy's theorem can be expanded in [Xf ~1 

. . . . . . . . . .-’ ., ,.., 0) . 
- 

in the form of.an infin.ite, series;- s(X) =. -, >:: I?$"* 

'iok kvery Xo <l 'and every E'>O- there' exists an N 
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such that I s(x) - 
c 

6 for [xI<-x,. 
- 

Thus ) WV - 
. v=1 1 I v-1 

yields:..the y,equired approximation. 
. ' .! . :., ' 

BfiRlti: Clearly N can be determined so large that'an'y. 
N 

. 

g'fven number of 'derivatives of 7 BvXU dpproximates the 
" . . .2)?$ 

COrr8SpOnding derivatives of SW. 

It is noted further that a formal .computation y.iqlds 
for the right-hand side of (152) for lx/ <l .a 

; 
..w .,w. . _ '.. . 

x =.s- $- (,2k'+l)q' +$(4ka+2k-l)a3 

: . -> . 

. * 

I ‘. - &$480k=104k4-572k3+ 148jca+i&k--25)s6+ &-$2880k' i 
1. . -;: ,--- , 

-1584k5-3944k4+2212k3+1140ka-60&-5)s' + . . . ' ' (I'$) 

The inverse function is [, I;.. ~ . . ,' . 
s'=+'X'+ +(2k + ,,,a'i+j;;ftk2 + 6k f 3)X3++&4k3 " 

;L;t68k"+76k+29)X4+& (46k4+212k3 + 392k' + 328k' 
:. . . . _-, . . ,! 

'-J- 103)x6 + &-&48&?+' 2 976&* + 7i168k3 . . ,c. 
f 1&88k* 't-.. , + 7266k + 1935)X6 + &j(2880kR 

. .a, ': . I + 23.4,72k" $ 64b'32k'* '+ 'i$'2ib&'3 ,$' l:y~~,&&~ * ! 

+ 98086k + 22675)X' + , . . (167) 
. . .a.. 

BY the prsent result 'this series converges;-.:in. '[X]<l, and 
therefore for OSX<l. 
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4,. -.: III. ADDITION&L B2MARKS '_ . .: . - . , !; '2 
* . -:s. . . . 3 '.. I 

'16:~The Boun'dary Value‘Problem in the Physical Plane. 

The theory developed in the second part of the paper 
leads to various methods for constructing flows around air- 

, :f Qt:iS . 
> . : 

The primary problem to be faced in the theory of airfoils 
is to determine the flow with a certain velocity at infinity 
around an obstacle given in the physibal plane. This leads to 
a very complicated nonlinear problem in the hod'ograph plane 
since the domain where the flow is defined is determined by 
the flow itself. However, this problem may be considerably 
simplified if it is agreed to obtain a flow around an obstacle 
which approximates the given obstacle. 

The hodogranhs of flows of an incompressible fluid around 
prdfiles of certain tyoes and for a number,of angles of attack 
may be determined once and for all. . 

The present approach also makes it possible to construct 
functions satisfying (3.2) and having singularities of.the 
kind requPred - that is., singularities of the flow of a com- 
pressible fluid which yield sources, vortices, and doublets. 

A hodograph is chosen which in the case of an incompress- 
fble fluid leads to the desired profile.- 

Let @(v,e) be some solution. of (32) which possesses 
the required sfngular$ty at point a (the image of z = m). 
A solution 0f q(v,e) of (32) is further determined, which 
is regular in the domain, H and such that 

f.1' -i . . ,., 
.':':" @(v&) + l)(;v& 1: :. 

assumes a constant value on -the boundary h of H. 
*, :.. . * . * 

The obtained function :ii:b ho'dograph of a flow of a com- 
pressible ~flbi'd~the image <f Whi'Gh in the physical plane will 
in many instances not differ considerably from the'gfven pro- 
file. T,his .'me'thod' :of &tack, 'c'ah be refined:' By the forego- 
ing procedure the initial profile fs di.storted 'i'n a. certain 
-35 if the given profile is distorted in opposite-directions 

. 
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_._ -.- c, . . . - . .I-‘., 

and if the prOCedUr6 described is repeated to the distorted 
profile, then in many instan.q.es: a.,?retter:spproximation is ob- a . . . 
tained. This method may be repeated until 
of accuracy fs attained.' . .'.I. i.:; :,-' 

the desired degree 
: j 

However, this arocedure .has .the inconvenience that in 
order to determine JI it is neces8'ary (at each step) to 
solve a boundary value problem for the equation (32) whfch 
reouires rather long cbmputatian. .:Ip anot,her paper-the . 
author has devela~~d~i~idatrs~l~.an.alternati.v6 to;t,hi,s'method,- 
in which he avoids the necessity of solving boundary valuer'. 
problems. I s ',* 

.i 
In the present considerations'*attention was'in the main 

directed toward the subsonic case. In addition to the mdth,$d 
of attack,which is based on considerations of section 8 of *' 
the second part, thereiexists another possfbility for haridd'iiiig 
the mixed problem - that is, to construct flows which are'*p&- 
tially subsonic and partially supersonic. . . ' 

. . b . I : . . .. ..,' f I .I 
17. The Representation of the Stream Func.tion of a. 8 
Subsonic Flow in the Begion in Whi'ch .the Velocity ' ', 

is Near 'the,VelocIty of Sound . :*, ' 
Pirtially&p.ersonic Plow 

L *. 
. ‘-: ' . r. .* : 

In the region (I$ 2 MO< 1) where MO i's dear 1, the 
series (85) converges very slbtily, and it is,.therefore,neces- 
sary to employ a large number of:terms in .order to obtain a. 
good approximat.i,on for $*. If this be the cassh it is then 
expedient to repiace,the expansion (85) by (103) . . '. II.. I, 

This fs, however', not the only':nay of*overeoming this ,. 
difficulty, and in the following, otheti means of.'so doing s 
will be indfcated; this alternate approach employs the method 
of "analytic continuation:* . ,.:' 

lit may be observed that. a similar procedure can be ap- 
plied to prove that for every profile (satisfying certain 
conditions) there exists a flow of a compressible fluid. 

. 
'This method will.%6 ti'e:eloped in more detail Jn a fu- 

ture renort of the aWh.or.:l . 
s . 7 * ,I ;. . ; y I ,' : I4 I :, ,.a L ,, :- :':.I., 
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J . . 

Let W(V,~*) ge deter"mine$%n, a domain, say H, and let 

c * l,n = 1,2, . 
i~~"!~p8 of (46) 1 

. ,. be a ltqompletell system of particular so.- 

, each Jln being determined.in a domain G. 
'Suppo'se that H 'and .G actually do overlap and denote their 

m . . 
common part by I. Further, let anQ* de the series'ex- 7 

ntim 
pansion of @ in I. Frequently an\Cin*:'will converge 

1 n=l 
outside.ef I, .say in the domain II, - I, where H, is G 

co . . , . .y' 
or some part of‘lit . If, in addition, 

1 an*n can be' te,rm- 
. 

. ,n=l -. 
wise differentiated twice fn H,, it represents.the analytic 
continuation of JI in H, - I.. 

. 02 -. 
Remark: The.requirement,*!.hat ' '1 7 ag$n ' 'co,incide with JI' in 

n%l 
a.domain I, can be replaced by another requirement, which 
will be explained later. . ,,.. ., ..,, . . . . 

Frequently, *he doma+ Ha . &.wh,lch:the stream function > . 

1' 

. .- . . . 
can be represented in the form an*n covers a supersonic 

" '. n=$ 
region as well, and.'cpn%-equ'ently.this method will then-yield 
the flow in thfs latter re&nh;* In'this manner; a method 
(based on considerations other than t'hose of sec. 8) for de- 
termining a mixed flow may be obtained. 

Two alternate forms of thi's method iill be*dfg;'ci$&ed'in 
the following. , . . : *; -. 

First Method 

In order to develop the first approach, an auxiliary 
lemma must first be proved. 

Lemma: Let P(V&), 
1 

Vc)<V~V1( -L(GLL '& 
an analvtic function of two real-variables --- v,9, and J et -- 
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L' ., : 
'; . ', . . . . 

.p(v,0) de, %;(v; = '1' 
L .. 

a,(v) = 5 L-l 
f 

ITUG 
L f 

'&v,EI), c?.y-- de, 
.t:, .(.. . LL ; I 

P(v,B:)., sin y de (168) 

. ' _be its Fourier development. The ser'ies'(16d) converees'd- 
f.ormls and can be differentiated termwisq ang finite number 
of times both with respect t;O v 'and with re$dect to 0. 

", '. 
Proof: Let . ' 

. . 

Y c . u 
rrve CO8 - + 

L 
dkb,(v) 

dvk 

IWe 
sin - 

L 1 , (k. T: 1,2> 

.N ow., sine.?, p is an analytic function of v :. ' 
i,s also an analytic function, and therefor'e 

*.,. 

is boulided, tiniformly, in vi r ,./ . 

On the other hand,. 
. 

. . 
, ,- . 

and 13,: .aap 
a~ a6 

.(169) 

.  

* .  

.  



* -. . 

daV,(v) 
dv I 

“., : . . :. *. : . . . ,‘,. 

2 

‘('170) 

from which the uniform convergence of the series .' . . . . . : . . : i _ ? ; . ’ ’ 
1 *. 

03 
. 

-s 

da,, (v> 
r ~0s d.-- + db73(v’ sin - 

TD8 *VQ 
.-' (171) 

0 dv L dv L 

. . :. . . . 

*. fo3lows: .'.But (171) is the series wh5ch.i~ obtafned,bi&ffer- 
entiating (168) term by term. *In a similar way the otheriz. 
cases may be handled. 

.i 

Since every:solutfon of an elJip_tic ep~~tign,wlthr~~9-:,*. 
iytic'coefficientsiis an anafytic fdnct:ion.,o$;two feal-Vap& v 

'b ables, 
"p.tir,e) 

the result obtained cab be ~a?Dlfedto the case where"'- 
is the stream function $(v,e 1 of a subsonic flow. 

Thus 

a.+) = + 
- . s I)(+) 00s q de, 

. 'L . , 
L . . ,-... . . . . 

b,,(v) = + \li(p,8) sin F d6, (V = 1.,2, . . -1 

. . . -* : :.... 
can be differentiated termwise. if now, following Chaplygin 
the author 'introduces instead of v the variable 
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V2.r.: : 
T = ,‘-. L ;‘“- -. ^ _ . 

: 2aoz . 

then the'equation for,: \cI iisumes tke form i : . 

a ( z,2T (l- d- 
c 

Bg)+l " (2s + 1) (1 +-8 & 
J 2T(l - 7) ae= = 0 (173) 

-. 

where B = 1 (reference 1, p. 5, formula (12)). 
(k.-? .:. ,. 

Differentiating tetimwise gives 

- (3 ‘: 1)T (1 _ ,)-’ 
.,T(l -.T) . . 

* (174) 

and, therefore, the a,, and 
tion 

,bV, are each solutfons of equa- 

-'a _ 1 - (2a + 1)T 
dT > T(1 - T) 

(175) is a h ypergeometrfc series and 
-X176) maybe written in the form 

1 - 7) 

l,- T) -B.navai4,=0 
-4L" J 

thus every solution of 

I :. a. 2% t :r B, “G -I- B,F,*)T 
! : 

(176) 
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Fv = Fh,,,B,,: . -8; 1 - 71, 
:-. . . . .,-I . . 11 ..,. z -- (177) 

Fy* = (1 - T)- -'+l F(Y, - &v, Y, - p,; 2+p; 1-T) 
'z ! ._ - ::- . , . ' I .i :; 

a ,'. 

_ : ..f ! :'. - . . : ,. :' 

In order to determine the constants A,,, BUS the following 
theorem f s ewlwep.: . . ,. . . . .' .,.:'. . .._... _ . . . . _, ,. ,.: 

,+) - (vo;6.). = .$f2), (pole.)... ., ’ 
.: 

. 

and 

(v,6) = da) (v 8), y.j,-,*:; :: 

a, av v=vo VF.VO 
.;. . . . . : . . i\ 

then in t‘he whole domain [v. --- < v< vi* - - - -i, 4 ,.& f L) 
, 

(179) 

(180) 

(181) 
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Remark: Suppose that !;;;, funct'ior; g(c) 
Amv) ( 

[ = A 
see (85)) is regular in some domain 

- ie, 
H, +.H,, 1. 

I ' . . . 

which domain lies in [6' C 3,h2 A < 01. 
theorem it follows that $ = I,m).P(g) 

Thqn by the main 
is also regular in 

H, + H,. Suppose that @ has been evaluated in the domain 
El* but ft Is desired to avoid the eve,luation of \ir by 
means of (8.5) .sfnce this series convsrges.very .slowly In H,. 

-. . L., . ..-A--.Jwa 

In order that I 

(1823 

‘s lk) 
V (T> = FV + 13;")'Fy*] -?, (k = 1,2) (183) 

-, . . . . ,. a ..I* . *.. . I 
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-tiee't'he solution: $' under lconsideratf:on, the .constan<s 
A (k), B (k) 

V V must be .determined so that'. " 

. :L - 

. . 1.. a. 
. . 

,. 

2 . 
. . 

*. 

s (l) (7’) IJ, :. j’ 
I 

s iti) (T) 
v VIVO 

ds,/) (7) 
. 

dv 

ds ('I (T) p.. . ._ 
. dv 

(184) 

= 

v=vo 

da,(v) 

CiV 

db (v> 
dv 

: 
v=.v 0 * . 

v=vo 

(185) 

It is nqticed that . +.; 
, '. 
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a-* 5. ; , :‘ . * ,.)I .- 1'. 

Since in 
function, 

is an analytic 

cu 
F, + E$/.) F;* ’ I COB’ rrv6 . 

and its derivatives converge uniformly and absolutely in this 
domafn. Then (187) represents the solution @ under consid- 
eration in the regfon Ha. Eoreover, this series (and its 
derivatives.) may also converge outside of H,, say in 
H -3 = CV% < v < v3, -L ( 8 < Lj. If H, partially lies out- 
side of the domain [ea < 3hs, X < 01 (see sec. 11) then the 
obtained exgression'gives the analytic continuation of the 
solution outside of th.e domain of representation by the inte- 
gral formulas (85). In particular, H, may include some 
region which lies in M > 1. 

Very often it is known that the region, say L, where 
the velocity is suoersonic is small. Now, instead' o,f summing 
to infinity, take 

N 

n 
s 6) (7) u CO8 Y@ + s (a) (7) 

L V 
.’ v=l 

sin y 
I 

(188) 

(see (183) and (177)) where N is sufficiently large; then 
(188) can be considered a sufficiently good approximation for 
analytic cont+puatpon of t-he stream funct,ion \Ir, under con- 
siderati on, On th'e other 'hand, (L88): re$resonts @ in. the 
whole plane and therefore is -particular in L. 

I,n this way are,, obtained..approximate flow patterns-.which 
ar'e 'partfally supersonic. s 1-n applying this Jme.thod,. it' is 
necessary, however, to check whether the streamlines in L 
approach to smooth limit line,9 when m. increases. I . . . . 1 L . i 

.,. ,‘ + 
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’ : i: : % ‘T, 2, , ‘L :: :~Secaad..Method. : $ ,'. ' * i . . I t 
': ..:a' . ,.In reference :,2 the- aqth9.r :,&as introduoBB,;d~ffer~:rit'.." 
c . methods 

"6f (32). 
for computing sets of iparticular 

(See 'i. c 17 iha p. 23 
SO,~~t.iOTf(i!:!:,~n(V,6.) I 

lof r:ef6renct$ '.i';) i :.T:he fusc- 
tions of each df these sets a're defined for.'the'subsonic and 
the supersonic range. . 

Let H be,a.damain in which it is desired to determine 
a hodograph'with 'a"supersonic velocity. Then H is divided 
into two qverlaqping ,parts 8, :, .Iq.. H, the veloc- 
ity is through'out subsonic. 

and H,. . 
The intersection of Hi and 

Ha is d.enot-ed by ' I. In figure'5, Hi 'is' that part "of H 
for whfcX vsvi, and H, is that port kor which v:g To': 
v. c v1 < 1. There is determined a function qo(e,v) which 
is defined in Hi an.d.~.has at point a, a prescribed singu- 
larity, and on the part ,of h which lies in v .<'Vl, h 1s . . 
approximately constant values. . . I- . .' : ,. . . L : Now'kobi;bk'r the' functions I 

n 

:. 

'and 'determine the o+' 'and B‘V in such a way that 
. ‘. *. 

. * 
. :, - ,. . . : . . .: , 

., 
. . i - 

will be a minimum. 

lIt is observed that is iiir oossible also to use the 
Ghaplygin solutions. See, for instance, reference 2, pp. 18- 
22. 
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If the boundary v~&e"~r~$l~&.:has a solution (possessing 

. 
certa'ih."prbp;~~rt'i.:6'$"or;' :t'he. '(bo'u,ndarf"' h) and. 'if.'thi ,syst:e,m. , 

:' . . . .e. I .- 
' i.8' cornple't,e ; . td.en it is wossibls to show: (under..,certain. sdadi- 

.t,i."d';ial cond.itions) that the, limit;' .functioa 'obtained by thils 
'process will yield the solution, . . . ,' ,I, .., ' . 

:.The*:.method. deireloped in this paper yields a'general j ' 
formula for, the stream functions of possible compres'sible'~" 
fluid flow patt8rm.F. '. . . ',. . 1' . . . . . .I, .z 
. ,' As indicate'd in reference 2 ('sets: '6 to-81 there exist' 
other methods of Obtaining particular solutions of eq,u&<i&n' 
(32); and for deriving from them solutions .of. (117). #They: ' 
often are not very conventont for practical purposes, and in 
many instance8 represent a flow only in a,part:of It8 domafn 
of definition. 

In the follqwing will be.:i$dicafed a method of obtaining 
particular solufidns*df equation (32) which has the disadvan- 
tages indicated but which can also be applied in the three- 
dimensional case. *. . , 

As is well known, th; 'v'elocity 4 = (u,v> of an irrota- 
tional fluid flow satisfies the equations 

w(p %), ,’ p-. ,.F f d. 7, p. ,I 1 r' 
(PP~uchy,Biemann equation) (189) 
. . 

This suggests considering three-dimensional flows where the 
velocity 3 = (-u,-v ,-w) satisfi,es the equation 

: ." : b 

o(p s'l ='o,: ;v x "s = 0 (190> 

P = pm ,a :j$ 
being function of V = (u2 f v: +.w ,> *- .:, .' alone, 

It follows from the second equation of (19'Cj'that there 
exists a potential a, such that 8 .t : * : . ,I : . 

, - 

. 
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1nserfin.g thii"value in the first equation of (190) yields '-' 

alp a4qad 
ax 

+acp a@/ad + ah adas) =m,o 
.* ay 1, 

(192) 
..as '. 

(19ij IS a very complicated nonlinear,partial diFferenti& 
equation. I r,* * .' , .I : * . . . . . . 

The introduction of u, v, w as new variables lead8 to 
a much simpler nonlinear differential equation. . ..,I. ..- .- 

.- 
Introduce as new variables 

. . '. . ,. . - . . - . . : 
* t.: . . . . 

. . . 
a@ v = 84 u = -, a+ 

.ayl 
w=-. (193) I 

ax i a2 . . f::: 

. 

/ 

. 
I . 

and as the new unknown function 
. '. i:: 

A = xu'+.yv + zw v-4 .=I. (1?4) 

Use (193) to obtain from (192) : . . ; 

a(p) + a(pd + a(pd 
= ?p,u +. p 

1 . 3 

au av aw 
ax aJf .:. az . i, .- + PvJi z + ,P,U z ..a x 

+ PUT g + [P,V + P] g + p,v g i p,w g + pvw ig 

. 

1 .,..a++?ww+P]ijf= 0 

It follows from (194) -that 

A ax ay -“‘aZ =,x+u-++-+w-- B ax a+ as a@ az 
U au au au 

-B---=x 
ax aU - as au az au 1 

(195) 

. .,;.; . (196) 
A, = y, A, = z .** . 

and 
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*,e . -> :, :',, - , .:, ,. ..I.* I .a: :.; 

ax h ax -= ay 
ai;L;- h@+ ax = h UU’ -s 7 ..“.a .aw ,;T?t’-: as” TAUv! 

:: ., :. ’ ,’ 

ay 
aw = Avw, ae z = huw, az av = h pw'.' g = hww, 

From. . /,. ; . f . . -.. ., . . ,_ .: .. 
b . 
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. 0 

ay 
..a; . = xvv 

I 
(197) 

.-:., . 

ati = au’A &in..;“’ au: ., 1 -- 
aU ax uu ay u-7 T G kw = I ’ 

au 
dv 

Eau, + &.A 
.ax uv ’ ay VP 

+-%?I aZ vw = 0 

there is obtained 

au 
ax = :D, and so forth * ,(199) 

where D. denotis the det%'rminant 
a< 

h$lu huv %lw .:; , - *, ', . 
D= ~~UV xv, %w 

h h A* uw VW ww 

' .I' .,. ..," 
Substituting the valxi'es 6&a'?.ned in (199) into (1951 yields 

he following equation for h: 

. 



A UW 

. . 

+ P 1 
hi . 

. . h bv UV 

+ PwU. 

. r. A h-7, uw 
*’ . * ‘,, ’ : .; r : ’ ‘. . : A& huw : ‘,. A,,’ h,, . 

x xww 
-+*pwv y 

WU 
A 

uv 
‘Xi, 1 

.* --..:.. 

A’ . uw”::‘? . A* x,, : L 1: . uu 

t b,wcp) 
. I 

= 0 
A . :xww. .* : . ipv A,-, . . uv 

Herq .p. = p(.u2 t v2 s y2) 4 ..fs.a known funotion; <.. : 
- . * '< 

!:There nay arises the problem'of determining particular 
solutions 6f (200). -Clearly, this can be done byiasing the 
series developments . . 

which s.at:!:$,fy teauation (200). 
* . * . ., '- 

.>: : :, . , . .,.. .' . . 
Such a series development which represents.'(in"tde hodo- 

graph space) the potential function @ 
pattern'af a compressible fluid 

of a p?ssible flow 

borhood of‘t'he origin. 
c'onver'$e< d:niy.in the,'n,eigh- . . . ., . 

. . .* . . *, '1.j ..:,$ * I t 

However, there e'xist methbds'~'of-dete~minirig 'Q, 'in the 
whole region of the real (u,v,w) space where @ is regular, 
Such a-representation, for fnstance,, 'is givqn'in many cases 
BY . ': . . -: .‘. <. -. .' . 
I . ,. ,,'. . 

A . umvnwP; " ' 
@(x,y,z) = k 2; o“' .y mnp . ': 

m,Zp 
I'[1 + k(m 4 n + p)] 

, 1 ;:I : 
I* ,*. ': / i .. 
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. 4 
i , (‘\ . 

, ! I .I . I *r ‘.” , , ,*s. . . I * 
I 
1 The main result of the present report consists in deriv- 
! ing:a*"*formula which.transfsrme an arbitrary analytic function 

:,,.I ,, . of!a complex,v.a,riable into a stream function of a :compressi- 
ble su,bson'i'c flow. . ~,,,. : . l t 

This formula yields compressible flows around symmetric 
: (and d'e$'ta'i'nponsymmetric) obstacles. . 

' .' I 
iTJ+e: ma%n difficulty arises.in adapting the formula to a 

given shape of the obstacle. Approximate methods for solving 
this problem are indicated in sectton 15. 

Since ali expressions appearing in'the theory of a cdm- 
pre,ssibl;e .fluid flow are much more complicated than those 
occurring in'the study of incompressible flows, a careful 
investcgation of the numerical methods to be applied is ndc- . 
essary. 

’ . “‘,. ’ A considerable part of the.numerical work con i ts in 
'preparing tables of auxiliary functions such aa QPJ, which 
have to be used in all particular(~aaes. In this paper the 
Puict i on 8 QCn) . I 

Tables for the 
QT;y,;omputed up to n = 4, for k = 1.4. 

for higher values of thes.supersoript 
n will be necessary if flows with maximum Mach'number ap- 
tiproaching 1 are to be considered. I . ,. ,; 

I 
.*. ' Each particular problem also involves the;performance 
of certain integration processes. In order to advance the. . 
application of thie theory it would be necessary to use ef- 
ficient msdern'c~mput~hg'delrices. * 'I . . . . 

. . : * 1 i,l 
. The present paper'dpals onl, with subsonic flows. If,- 

should be emphasized that the development of the theory wi+l 
permit consideration of flows for which the maximal velocity 
exceeds that of sound!': (See sec. 17.1 . . . 

Brown University, 
Providence, R. I., May 15, 1944, 

. 

. 
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The ralues c 

Table IIa 
F, H, Q%m k = -0.5 

v/a0 Eml F(274 
0 1 0 

0.272 1.000 0.0007 

0.430 1.001 O.OOqS 

0.518 1.002 0.0105 

0.551 1.003 0.0138 

0.593 1.004 0.0187 

0.861 1.015 0.1135 

1.165 1.046 0.6430 

l.Ai.40 1.111 3.6330 

1.527 1.145 6.9763 

Y 

F 

0 Q (2X) 
0 

M T 
0 

0.265 

0.403 

0.473 

0.497 

0.528 

0.690 

0.820 

0.901 

~1 

0.964 

0.915 

0.881 

0.867 

0.849 

0.723 

0.572 

0.433 
0.388 

-0.0299 

-0.0602 

-0.0909 

-0.1115 

-0.1267 

-0.3009 

-0.7033 

-1.5871 

-2.2682 

. 

1 

0.921 

Tah-LeRb. Thm values of P, H, &), dn) for k = 1.4 

2a F H 

.cmQ 1.m 

.am l.can 

I 
.oQll l.ow2 

.Qc& 1.0014 

.(X256 l.Wf,2 

Ax66 1.0110 

&) 1 p 1 ,(3) 1 q(4) Rb)1 p R@) I 

+ 

#I 

.ww .cox 
9.94x 

4.9197 

3.2161 

2.3373 

1.7941 

1.5901 
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.mb8 
A670 
.2307 

.7&o 
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2.6949 

5.w53 

11.8168 

. 
Y 

.cQw 

.low 

.zeQ 
I 

.#Kx, 

.4ooo 

'.5cca 

~ .55w 

~ .6ma 

i .6500 
.7ax 

.7500 

.8wa 

1 .85co 

1 
.ww 
.ooM) 

-.oooq 
-.0056 

-.OlW 

-.057b 

-a35 

-.15Ol 

-am 

-370 

-.695s 

-l.Q8% 

-2.ola6 

-W 

-3.8772 

a.5096 

-1.7327 

.1.2073 
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AlO1 -.34% 

.?a23 -.7494 
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1.3663 -4.G770 

2.8304 -12.7121 

UW3 -35.1357 

17.4338 -l49.6938 

.Qwz 

.Qw8 

.0064 

-0374 

2u.6 

.5m 

1.3527 

3.7602 

U.7558 

X.4676 

194.4562 

954.Q3 

.aa7 .5248 -9.Q769 81.6373 

.m7 A743 -21.946i$ 306.6745 

.6555i.a3ob -73.6421 3712.3621 

.waQ 00 -00 00 
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